Show simple item record

dc.contributor.authorRivera-Ríos, I.P.
dc.date.accessioned2017-05-11T11:12:33Z
dc.date.available2017-05-11T11:12:33Z
dc.date.issued2017-05-05
dc.identifier.issn2299-3282
dc.identifier.urihttp://hdl.handle.net/20.500.11824/673
dc.description.abstractQuantitative versions of weighted estimates obtained by F. Ruiz and J.L. Torrea for the operator \[ \mathcal{M}f(x,t)=\sup_{x\in Q,\,l(Q)\geq t}\frac{1}{|Q|}\int_{Q}|f(x)|dx \qquad x\in\mathbb{R}^{n}, \, t \geq0 \] are obtained. As a consequence, some sufficient conditions for the boundedness of $\mathcal{M}$ in the two weight setting in the spirit of the results obtained by C. Pérez and E. Rela and very recently by M. Lacey and S. Spencer for the Hardy-Littlewood maximal operator are derived. As a byproduct some new quantitative estimates for the Poisson integral are obtained.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectweighted Carleson conditionen_US
dc.subjectMaximal operatoren_US
dc.subjectbumpsen_US
dc.subjectentropyen_US
dc.subjectweightsen_US
dc.subjectPoisson integralen_US
dc.titleA quantitative approach to weighted Carleson conditionen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.relation.projectIDES/1PE/SEV-2013-0323en_US
dc.relation.projectIDEUS/BERC/BERC.2014-2017en_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersionen_US
dc.journal.titleConcrete Operatorsen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España