Show simple item record

dc.contributor.authorThuong, L.Q.
dc.contributor.authorNguyen, H.D.
dc.date.accessioned2017-05-14T15:40:50Z
dc.date.available2017-05-14T15:40:50Z
dc.date.issued2017-05-14
dc.identifier.issn1534-7486
dc.identifier.urihttp://hdl.handle.net/20.500.11824/674
dc.description.abstractWe introduce a new notion of $\boxast$-product of two integrable series with coefficients in distinct Grothendieck rings of algebraic varieties, preserving the integrability of and commuting with the limit of rational series. In the same context, we define a motivic multiple zeta function with respect to an ordered family of regular functions, which is integrable and connects closely to Denef-Loeser's motivic zeta functions. We also show that the $ \boxast $-product is associative in the class of motivic multiple zeta functions. Furthermore, a version of the Euler reflexion formula for motivic zeta functions is nicely formulated to deal with the $ \boxast $-product and motivic multiple zeta functions, and it is proved for both univariate and multivariate cases by using the theory of arc spaces. As an application, taking the limit for the motivic Euler reflexion formula we recover the well-known motivic Thom-Sebastiani theorem.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.titleEuler reflexion formulas for motivic multiple zeta functionsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.doi10.1090/jag/689
dc.relation.publisherversionhttp://www.ams.org/journals/jag/0000-000-00/S1056-3911-2017-00689-1/home.htmlen_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/615655en_US
dc.relation.projectIDES/1PE/SEV-2013-0323en_US
dc.relation.projectIDEUS/BERC/BERC.2014-2017en_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionen_US
dc.journal.titleJournal of Algebraic Geometryen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España