Gaussian Decay of Harmonic Oscillators and related models

Ikusi/ Ireki
Data
2017-05-15Laburpena
We prove that the decay of the eigenfunctions of harmonic oscillators, uniform electric or magnetic fields is not stable under 0-order complex perturbations, even if bounded, of these Hamiltonians, in the sense that we can produce solutions to the evolutionary Schrödinger flows associated to the Hamiltonians, with a stronger Gaussian decay at two distinct times. We then
characterize, in a quantitative way, the sharpest possible Gaussian decay of solutions as a function of the oscillation frequency or the strength of the field, depending on the Hamiltonian which is considered. This is connected to the Hardy’s Uncertainty Principle for free Schrödinger evolutions.