Show simple item record

dc.contributor.authorIgnat, L.I.
dc.contributor.authorPozo, A.
dc.date.accessioned2017-06-07T13:41:07Z
dc.date.available2017-06-07T13:41:07Z
dc.date.issued2017-06-01
dc.identifier.issn0764-583X
dc.identifier.urihttp://hdl.handle.net/20.500.11824/680
dc.description.abstractIn this paper we analyze the large-time behavior of the augmented Burgers equation. We first study the well-posedness of the Cauchy problem and obtain $L^1-L^p$ decay rates. The asymptotic behavior of the solution is obtained by showing that the influence of the convolution term $K*u_{xx}$ is the same as $u_{xx}$ for large times. Then, we propose a semi-discrete numerical scheme that preserves this asymptotic behavior, by introducing two correcting factors in the discretization of the non-local term. Numerical experiments illustrating the accuracy of the results of the paper are also presented.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectaugmented Burgers equationen_US
dc.subjectnumerical approximationen_US
dc.subjectlarge-time behavioren_US
dc.titleA semi-discrete large-time behavior preserving scheme for the augmented Burgers equationen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.relation.publisherversionhttps://www.esaim-m2an.org/component/article?access=doi&doi=10.1051/m2an/2017029en_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionen_US
dc.journal.titleESAIM: Mathematical Modelling and Numerical Analysisen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España