Show simple item record

dc.contributor.authorYang Z-H.
dc.contributor.authorZheng, S.
dc.date.accessioned2017-07-19T12:03:03Z
dc.date.available2017-07-19T12:03:03Z
dc.date.issued2017-07-18
dc.identifier.issn1331-4343
dc.identifier.urihttp://hdl.handle.net/20.500.11824/698
dc.description.abstractLet $I_{v}\left( x\right) $ be modified Bessel functions of the first kind. We prove the monotonicity property of the function $x\mapsto I_{u}\left( x\right) I_{v}\left( x\right) /I_{\left( u+v\right) /2}\left( x\right) ^{2}$ on $\left( 0,\infty \right) $. As a direct consequence, it deduces some known results including Tur\'{a}n-type inequalities and log-convexity or log-concavity of $I_{v}$ in $v$, as well as it yields some new and interesting monotonicity and convexity concerning the ratios of modified Bessel functions of the first kind. In addition, a few of sharp bounds involving $I_{v}\left( x\right) $ and their ratios are presented.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectModified Bessel functions of the first kinden_US
dc.subjectMonotonicityen_US
dc.subjectconvexityen_US
dc.subjectfunctional inequalityen_US
dc.subjectTurán type inequalityen_US
dc.titleMonotonicity and convexity of the ratios of the first kind modified Bessel functions and applicationsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/669689en_US
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersionen_US
dc.journal.titleMathematical Inequalities & Applicationsen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España