dc.contributor.author | Yang Z-H. | |
dc.contributor.author | Zheng, S. | |
dc.date.accessioned | 2017-07-19T12:03:03Z | |
dc.date.available | 2017-07-19T12:03:03Z | |
dc.date.issued | 2017-07-18 | |
dc.identifier.issn | 1331-4343 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11824/698 | |
dc.description.abstract | Let $I_{v}\left( x\right) $ be modified Bessel functions of the first
kind. We prove the monotonicity property of the function $x\mapsto
I_{u}\left( x\right) I_{v}\left( x\right) /I_{\left( u+v\right) /2}\left(
x\right) ^{2}$ on $\left( 0,\infty \right) $. As a direct consequence, it deduces some known results including Tur\'{a}n-type inequalities and log-convexity or log-concavity of $I_{v}$ in $v$, as well as it yields some new and interesting monotonicity and convexity concerning the ratios of modified Bessel functions of the first kind. In addition, a few of sharp bounds involving $I_{v}\left( x\right) $ and their ratios are presented. | en_US |
dc.format | application/pdf | en_US |
dc.language.iso | eng | en_US |
dc.rights | Reconocimiento-NoComercial-CompartirIgual 3.0 España | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/es/ | en_US |
dc.subject | Modified Bessel functions of the first kind | en_US |
dc.subject | Monotonicity | en_US |
dc.subject | convexity | en_US |
dc.subject | functional inequality | en_US |
dc.subject | Turán type inequality | en_US |
dc.title | Monotonicity and convexity of the ratios of the first kind modified Bessel functions and applications | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/669689 | en_US |
dc.rights.accessRights | info:eu-repo/semantics/embargoedAccess | en_US |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | en_US |
dc.journal.title | Mathematical Inequalities & Applications | en_US |