Show simple item record

dc.contributor.authorScrobogna S.en_US
dc.dateinfo:eu-repo/date/embargoEnd/2018-07-15en_US
dc.date.accessioned2017-07-25T15:30:34Z
dc.date.available2017-07-25T15:30:34Z
dc.date.issued2017-07-15
dc.identifier.isbn1078-0947
dc.identifier.urihttp://hdl.handle.net/20.500.11824/707
dc.description.abstractWe consider a system describing the dynamics of an hydrodynamical, density-dependent flow under the effects of gravitational forces. We prove that if the Froude number is sufficiently small such system is globally well posed with respect to a $ H^s, \ s>1/2 $, Sobolev regularity. Moreover if the Froude number converges to zero we prove that the solutions of the aforementioned system converge (strongly) to a stratified two-dimensional Navier-Stokes system. No smallness assumption is assumed on the initial data.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.publisherDiscrete and Continuous Dynamical Systems - Series Aen_US
dc.relationES/1PE/SEV-2013-0323en_US
dc.relationEUS/BERC/BERC.2014-2017en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectIncompressible fluids, stratified fluids, parabolic systems, bootstrapen_US
dc.titleDerivation of limit equation for a singular perturbation of a 3D periodic Boussinesq systemen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeinfo:eu-repo/semantics/acceptedVersionen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess