dc.contributor.author | Ignat, L.I. | |
dc.contributor.author | Pozo, A. | |
dc.date.accessioned | 2017-08-01T21:30:11Z | |
dc.date.available | 2017-08-01T21:30:11Z | |
dc.date.issued | 2017-07-01 | |
dc.identifier.issn | 0006-3835 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11824/713 | |
dc.description.abstract | In this paper we consider a splitting method for the augmented Burgers equation and prove that it is of first order. We also analyze the large-time behavior of the approximated solution by obtaining the first term in the asymptotic expansion. We prove that, when time increases, these solutions be have as the self-similar solutions of the viscous Burgers equation. | en_US |
dc.format | application/pdf | en_US |
dc.language.iso | eng | en_US |
dc.rights | Reconocimiento-NoComercial-CompartirIgual 3.0 España | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/es/ | en_US |
dc.subject | Nonlocal diffusion | en_US |
dc.subject | Splitting method | en_US |
dc.subject | Large time | en_US |
dc.subject | Asymptotic behavior | en_US |
dc.title | A splitting method for the augmented Burgers equation | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.identifier.doi | 10.1007/s10543-017-0673-x | |
dc.relation.publisherversion | https://link.springer.com/epdf/10.1007/s10543-017-0673-x?author_access_token=hTWi2RfFRWdJ1ZSlpCxULfe4RwlQNchNByi7wbcMAY57ECxScDSCSfzdy_XUU4A9kCjso1-B4kHJyVJJLGYMmOFcVpb7tGuVCd5hATvszKG5OkwSc5ThUM-JZhoObRvDERDHJujLDXb_xo09ktGEZw%3D%3D | en_US |
dc.relation.projectID | ES/1PE/SEV-2013-0323 | en_US |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | en_US |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | en_US |
dc.journal.title | BIT Numerical Mathematics | en_US |