Show simple item record

dc.contributor.authorIgnat, L.I.
dc.contributor.authorPozo, A.
dc.date.accessioned2017-08-01T21:30:11Z
dc.date.available2017-08-01T21:30:11Z
dc.date.issued2017-07-01
dc.identifier.issn0006-3835
dc.identifier.urihttp://hdl.handle.net/20.500.11824/713
dc.description.abstractIn this paper we consider a splitting method for the augmented Burgers equation and prove that it is of first order. We also analyze the large-time behavior of the approximated solution by obtaining the first term in the asymptotic expansion. We prove that, when time increases, these solutions be have as the self-similar solutions of the viscous Burgers equation.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectNonlocal diffusionen_US
dc.subjectSplitting methoden_US
dc.subjectLarge timeen_US
dc.subjectAsymptotic behavioren_US
dc.titleA splitting method for the augmented Burgers equationen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.doi10.1007/s10543-017-0673-x
dc.relation.publisherversionhttps://link.springer.com/epdf/10.1007/s10543-017-0673-x?author_access_token=hTWi2RfFRWdJ1ZSlpCxULfe4RwlQNchNByi7wbcMAY57ECxScDSCSfzdy_XUU4A9kCjso1-B4kHJyVJJLGYMmOFcVpb7tGuVCd5hATvszKG5OkwSc5ThUM-JZhoObRvDERDHJujLDXb_xo09ktGEZw%3D%3Den_US
dc.relation.projectIDES/1PE/SEV-2013-0323en_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionen_US
dc.journal.titleBIT Numerical Mathematicsen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España