Show simple item record

dc.contributor.authorHytönen, T.
dc.contributor.authorLi, K.
dc.date.accessioned2017-08-07T06:37:55Z
dc.date.available2017-08-07T06:37:55Z
dc.date.issued2017-07
dc.identifier.issn0002-9939
dc.identifier.urihttp://hdl.handle.net/20.500.11824/717
dc.description.abstractWe prove sharp weak and strong type weighted estimates for a class of dyadic operators that includes majorants of both standard singular integrals and square functions. Our main new result is the optimal bound $[w]_{A_p}^{1/p}[w]_{A_\infty}^{1/2-1/p}\lesssim [w]_{A_p}^{1/2}$ for the weak type norm of square functions on $L^p(w)$ for $p>2$; previously, such a bound was only known with a logarithmic correction. By the same approach, we also recover several related results in a streamlined manner.en_US
dc.description.sponsorshipERC Starting Grant ``Analytic-probabilistic methods for borderline singular integrals''.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subject$A_p$-$A_\infty$ estimatesen_US
dc.subjectsquare functionsen_US
dc.titleWeak and strong $A_p$-$A_\infty$ estimates for square functions and related operatorsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersionen_US
dc.journal.titleProceedings of the American Mathematical Societyen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España