dc.contributor.author | Lerner, A. K | |
dc.contributor.author | Ombrosi, S. | |
dc.contributor.author | Rivera-Ríos, I.P. | |
dc.date.accessioned | 2017-08-10T19:26:03Z | |
dc.date.available | 2017-08-10T19:26:03Z | |
dc.date.issued | 2017 | |
dc.identifier.issn | 0001-8708 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11824/722 | |
dc.description.abstract | In recent years, it has been well understood that a
Calderón-Zygmund operator T is pointwise controlled by a finite
number of dyadic operators of a very simple structure (called the
sparse operators). We obtain a similar pointwise estimate for the
commutator $[b, T ]$ with a locally integrable function $b$. This result
is applied into two directions. If $b \in BMO$, we improve several
weighted weak type bounds for $[b, T ]$. If $b$ belongs to the weighted
$BMO$, we obtain a quantitative form of the two-weighted bound
for $[b, T ]$ due to Bloom-Holmes-Lacey-Wick. | en_US |
dc.description.sponsorship | MTM2012-30748 | en_US |
dc.format | application/pdf | en_US |
dc.language.iso | eng | en_US |
dc.rights | Reconocimiento-NoComercial-CompartirIgual 3.0 España | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/es/ | en_US |
dc.title | On pointwise and weighted estimates for commutators of Calderón-Zygmund operators | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.identifier.arxiv | https://arxiv.org/abs/1604.01334 | |
dc.relation.projectID | ES/1PE/SEV-2013-0323 | en_US |
dc.relation.projectID | ES/1PE/MTM2014-53850-P | en_US |
dc.relation.projectID | EUS/BERC/BERC.2014-2017 | en_US |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | en_US |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | en_US |
dc.journal.title | Advances in Mathematics | en_US |