dc.contributor.author | Li, K. | |
dc.contributor.author | Ombrosi, S. | |
dc.contributor.author | Picardi, B. | |
dc.date.accessioned | 2017-09-02T19:29:59Z | |
dc.date.available | 2017-09-02T19:29:59Z | |
dc.date.issued | 2017 | |
dc.identifier.issn | 0039-3223 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11824/728 | |
dc.description.abstract | In this paper we present a theorem that generalizes Sawyer's classic result about mixed weighted inequalities to the multilinear context. Let $\vec{w}=(w_1,...,w_m)$ and $\nu = w_1^\frac{1}{m}...w_m^\frac{1}{m}$, the main result of the paper sentences that under different conditions on the weights we can obtain
$$\Bigg\| \frac{T(\vec f\,)(x)}{v}\Bigg\|_{L^{\frac{1}{m}, \infty}(\nu v^\frac{1}{m})} \leq C \ \prod_{i=1}^m{\|f_i\|_{L^1(w_i)}},
$$
where $T$ is a multilinear Calder\'on-Zygmund operator. To obtain this result we first prove it for the $m$-fold product of the Hardy-Littlewood maximal operator $M$, and also for $\mathcal{M}(\vec{f})(x)$: the multi(sub)linear maximal function introduced in [LOPTT].
As an application we also prove a vector-valued extension to the mixed weighted weak-type inequalities of multilinear Calder\'on-Zygmund operators. | en_US |
dc.description.sponsorship | Juan de la Cierva-Formaci\'on 2015 FJCI-2015-24547 | en_US |
dc.format | application/pdf | en_US |
dc.language.iso | eng | en_US |
dc.rights | Reconocimiento-NoComercial-CompartirIgual 3.0 España | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/es/ | en_US |
dc.subject | mixed weighted inequalities | en_US |
dc.subject | multilinear operators | en_US |
dc.title | Weighted mixed weak-type inequalities for multilinear operators | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.relation.projectID | ES/1PE/SEV-2013-0323 | en_US |
dc.relation.projectID | EUS/BERC/BERC.2014-2017 | en_US |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | en_US |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | en_US |
dc.journal.title | Studia Mathematica | en_US |