Show simple item record

dc.contributor.authorMas, A.
dc.contributor.authorPizzichillo, F.
dc.date.accessioned2017-10-18T10:54:04Z
dc.date.available2017-10-18T10:54:04Z
dc.date.issued2017-11
dc.identifier.issn1948-206X
dc.identifier.urihttp://hdl.handle.net/20.500.11824/741
dc.description.abstractUnder certain hypothesis of smallness of the regular potential $\mathbf{V}$, we prove that the Dirac operator in $\mathbb{R}^3$ coupled with a suitable re-scaling of $\mathbf{V}$, converges in the strong resolvent sense to the Hamiltonian coupled with a $\delta$-shell potential supported on $\Sigma$, a bounded $C^2$ surface. Nevertheless, the coupling constant depends non-linearly on the potential $\mathbf{V}$: the Klein's Paradox comes into play.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectDirac operatoren_US
dc.subjectKlein's Paradoxen_US
dc.subject$\delta$-shell interactionen_US
dc.subjectsingular integral operatoren_US
dc.subjectapproximation by scaled regular potentialsen_US
dc.subjectstrong resolvent convergenceen_US
dc.titleKlein's Paradox and the Relativistic $\delta$-shell Interaction in $\mathbb{R}^3$en_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/669689en_US
dc.relation.projectIDES/1PE/SEV-2013-0323en_US
dc.relation.projectIDES/1PE/MTM2014-53145-Pen_US
dc.relation.projectIDEUS/BERC/BERC.2014-2017en_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersionen_US
dc.journal.titleAnalysis & PDEen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España