dc.contributor.author | Rivera-Ríos, I.P. | |
dc.date.accessioned | 2017-11-27T16:35:00Z | |
dc.date.available | 2017-11-27T16:35:00Z | |
dc.date.issued | 2017 | |
dc.identifier.issn | 0013-0915 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11824/751 | |
dc.description.abstract | An $A_1-A_\infty$ estimate improving a previous result in
[22] for $[b, T_\Omega]$ with $\Omega\in L^\infty(S^{n-1})$ and $b\in BMO$ is obtained. Also
a new result in terms of the $A_\infty$ constant and the one supremum
$A-A_\infty^{exp}$ constant is proved, providing a counterpart for commutators of the result obained in [19]. Both of the preceding results rely upon a sparse domination result in terms of bilinear forms which is established using techniques from [13]. | en_US |
dc.format | application/pdf | en_US |
dc.language.iso | eng | en_US |
dc.rights | Reconocimiento-NoComercial-CompartirIgual 3.0 España | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/es/ | en_US |
dc.title | Improved A1 − A∞ and related estimates for commutators of rough singular integrals | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.relation.projectID | ES/1PE/SEV-2013-0323 | en_US |
dc.relation.projectID | ES/1PE/MTM2014-53850-P | en_US |
dc.relation.projectID | EUS/BERC/BERC.2014-2017 | en_US |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | en_US |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | en_US |
dc.journal.title | Proceedings of the Edinburgh Mathematical Society | en_US |