Show simple item record

dc.contributor.authorRivera-Ríos I.P.en_US
dc.date.accessioned2017-11-27T16:35:00Z
dc.date.available2017-11-27T16:35:00Z
dc.date.issued2017
dc.identifier.issn0013-0915
dc.identifier.urihttp://hdl.handle.net/20.500.11824/751
dc.description.abstractAn $A_1-A_\infty$ estimate improving a previous result in [22] for $[b, T_\Omega]$ with $\Omega\in L^\infty(S^{n-1})$ and $b\in BMO$ is obtained. Also a new result in terms of the $A_\infty$ constant and the one supremum $A-A_\infty^{exp}$ constant is proved, providing a counterpart for commutators of the result obained in [19]. Both of the preceding results rely upon a sparse domination result in terms of bilinear forms which is established using techniques from [13].en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.publisherProceedings of the Edinburgh Mathematical Societyen_US
dc.relationES/1PE/SEV-2013-0323en_US
dc.relationES/1PE/MTM2014-53850-Pen_US
dc.relationEUS/BERC/BERC.2014-2017en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.titleImproved A1 − A∞ and related estimates for commutators of rough singular integralsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeinfo:eu-repo/semantics/acceptedVersionen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess