Modelling of Thermal Sterilization of high-moisture snack foods: feasibility analysis and optimization
Abstract
High-moisture snacks, such as steamed buns and rice cakes, are traditional and popular in Asian countries. However, their shelf life is short, primarily due to microbial spoilage. Current manufacturing methods address this shortcoming through the use of chemical preservatives. To satisfy consumers’ demand for preservative-free food, thermal sterilization of a model high-moisture snack (steamed rice cakes) is investigated in this work. Bacillus cereus spores are heat-resistant pathogens typically found in rice products; hence, they constitute a suitable candidate to assess the effectiveness of thermal sterilization. A validated combination of predicted temperature profile of rice cakes based on thermal properties extracted experimentally with thermal inactivation kinetics of B. cereus spores allows us to assess the sensitivity of processing conditions to sterilization efficiency. Using both experimentation and modelling, it is shown that enhancement of heat transfer by improving convection from the heating medium (either water or steam) has a limited effect on inactivation due to the intrinsic kinetics of spore inactivation.