Show simple item record

dc.contributor.authorJunjie Zhang,Shenzhou Zheng
dc.date.accessioned2018-02-12T20:39:38Z
dc.date.available2018-02-12T20:39:38Z
dc.date.issued2018
dc.identifier.urihttp://hdl.handle.net/20.500.11824/768
dc.description.abstractWe prove a global weighted Lorentz and Lorentz-Morrey estimates of the viscosity solutions to the Dirichlet problem for fully nonlinear elliptic equation $F(D^{2}u,x)=f(x)$ defined in a bounded $C^{1,1}$ domain. The oscillation of nonlinearity $F$ with respect to $x$ is assumed to be small in the $L^{n}$-sense. Here, we employ the Lorentz boundedness of the Hardy-Littlewood maximal operators and an equivalent representation of weighted Lorentz norm.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.titleWeghted Lorentz and Lorentz-Morrey estimates to viscosity solutions of fully nonlinear elliptic equationsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.relation.publisherversionhttp://dx.doi.org/10.1080/17476933.2017.1357707en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/669689en_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersionen_US
dc.journal.titleComplex Variables and Elliptic Equationsen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España