dc.contributor.author | Junjie Zhang,Shenzhou Zheng | |
dc.date.accessioned | 2018-02-12T20:39:38Z | |
dc.date.available | 2018-02-12T20:39:38Z | |
dc.date.issued | 2018 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11824/768 | |
dc.description.abstract | We prove a global weighted Lorentz and Lorentz-Morrey estimates of the viscosity solutions to the Dirichlet problem for fully nonlinear elliptic equation $F(D^{2}u,x)=f(x)$ defined in a bounded $C^{1,1}$ domain. The oscillation of nonlinearity $F$ with respect to $x$ is assumed to be small in the $L^{n}$-sense. Here, we employ the Lorentz boundedness of the Hardy-Littlewood maximal operators and an equivalent representation of weighted Lorentz norm. | en_US |
dc.format | application/pdf | en_US |
dc.language.iso | eng | en_US |
dc.rights | Reconocimiento-NoComercial-CompartirIgual 3.0 España | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/es/ | en_US |
dc.title | Weghted Lorentz and Lorentz-Morrey estimates to viscosity solutions of fully nonlinear elliptic equations | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.relation.publisherversion | http://dx.doi.org/10.1080/17476933.2017.1357707 | en_US |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/669689 | en_US |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | en_US |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | en_US |
dc.journal.title | Complex Variables and Elliptic Equations | en_US |