dc.contributor.author | Zheng, S. | |
dc.contributor.author | Tian, H. | |
dc.date.accessioned | 2018-02-12T20:39:48Z | |
dc.date.available | 2018-02-12T20:39:48Z | |
dc.date.issued | 2017 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11824/769 | |
dc.description.abstract | We prove global Lorentz estimates for variable power of the gradient of weak solution to linear elliptic obstacle problems with small partially BMO coefficients over a bounded nonsmooth domain. Here, we assume that the leading coefficients are measurable in one variable and have small BMO semi-norms in the other variables, variable exponents $p(x)$ satisfy log-H\"older continuity, and the boundary of domains are so-called Reifenberg flat. This is a natural outgrowth of the classical Calder\'{o}n-Zygmund estimates to a variable power of the gradient of weak solutions in the scale of Lorentz spaces for such variational inequalities beyond the Lipschitz domain. | en_US |
dc.format | application/pdf | en_US |
dc.language.iso | eng | en_US |
dc.rights | Reconocimiento-NoComercial-CompartirIgual 3.0 España | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/es/ | en_US |
dc.subject | elliptic obstacle problems; variable power for the gradient of weak solution; Lorentz spaces; partial BMO coefficients; Reifenberg flat domains | en_US |
dc.title | Lorentz estimates for the gradient of weak solutions to elliptic obstacle problems with partially BMO coefficients | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.relation.publisherversion | DOI 10.1186/s13661-017-0859-9 | en_US |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/669689 | en_US |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | en_US |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | en_US |
dc.journal.title | Boundary Value Problems | en_US |