Show simple item record

dc.contributor.authorZheng, S.
dc.contributor.authorTian, H.
dc.date.accessioned2018-02-12T20:39:48Z
dc.date.available2018-02-12T20:39:48Z
dc.date.issued2017
dc.identifier.urihttp://hdl.handle.net/20.500.11824/769
dc.description.abstractWe prove global Lorentz estimates for variable power of the gradient of weak solution to linear elliptic obstacle problems with small partially BMO coefficients over a bounded nonsmooth domain. Here, we assume that the leading coefficients are measurable in one variable and have small BMO semi-norms in the other variables, variable exponents $p(x)$ satisfy log-H\"older continuity, and the boundary of domains are so-called Reifenberg flat. This is a natural outgrowth of the classical Calder\'{o}n-Zygmund estimates to a variable power of the gradient of weak solutions in the scale of Lorentz spaces for such variational inequalities beyond the Lipschitz domain.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectelliptic obstacle problems; variable power for the gradient of weak solution; Lorentz spaces; partial BMO coefficients; Reifenberg flat domainsen_US
dc.titleLorentz estimates for the gradient of weak solutions to elliptic obstacle problems with partially BMO coefficientsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.relation.publisherversionDOI 10.1186/s13661-017-0859-9en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/669689en_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersionen_US
dc.journal.titleBoundary Value Problemsen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España