Show simple item record

dc.contributor.authorGarcia, I. 
dc.date.accessioned2018-03-16T11:17:43Z
dc.date.available2018-03-16T11:17:43Z
dc.date.issued2018-03-12
dc.identifier.urihttp://hdl.handle.net/20.500.11824/777
dc.description.abstractIn this thesis, an Adomian Based Scheme (ABS) for the compressible Navier-Stokes equations is constructed, resulting in a new multiderivative type scheme not found in the context of fluid dynamics. Moreover, this scheme is developed as a means to reduce the computational cost associated with aeroacoustic simulations, which are unsteady in nature with high-order requirements for the acoustic wave propagation. We start by constructing a set of governing equations for the hybrid computational aeroacoustics method, splitting the problem into two steps: acoustic source computation and wave propagation. The first step solves the incompressible Navier-Stokes equation using Chorin's projection method, which can be understood as a prediction-correction method. First, the velocity prediction is obtained solving the viscous Burgers' equation. Then, its divergence-free correction is performed using a pressure Poisson type projection. In the velocity prediction substep, Burgers' equation is solved using two ABS variants: a MAC type implementation, and a ``modern'' ADER method. The second step in the hybrid method, related to wave propagation, is solved combining ABS with the discontinuous Galerkin high-order approach. Described solvers are validated against several test cases: vortex shedding and Taylor-Green vortex problems for the first step, and a Gaussian wave propagation in the second case. Although ABS is a multiderivative type scheme, it is easily programmed with an elegant recursive formulation, even for the general Navier-Stokes equations. Results show that its simplicity combined with excellent adaptivity capabilities allows for a successful extension to very high-order accuracy at relatively low cost, obtaining considerable time savings in all test cases considered.en_US
dc.description.sponsorshipPredoc Gobierno Vascoen_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectLEEen_US
dc.subjectAdomianen_US
dc.subjectAeroacousticsen_US
dc.subjectDGen_US
dc.subjectABSen_US
dc.titleOn Adomian Based Numerical Schemes for Euler and Navier-Stokes Equations, and Application to Aeroacoustic Propagationen_US
dc.typeinfo:eu-repo/semantics/doctoralThesisen_US
dc.relation.projectIDES/1PE/SEV-2013-0323en_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersionen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España