dc.contributor.author | Bonilla, M.R. | |
dc.contributor.author | Lozano, A. | |
dc.contributor.author | Escribano, B. | |
dc.contributor.author | Carrasco, J. | |
dc.contributor.author | Akhmatskaya, E. | |
dc.date.accessioned | 2018-04-17T07:47:42Z | |
dc.date.available | 2018-04-17T07:47:42Z | |
dc.date.issued | 2018-04-02 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11824/779 | |
dc.description.abstract | Olivine NaFePO4 is a promising cathode material for Na-ion batteries. Intermediate
phases such as Na0.66FePO4 govern phase stability during intercalation-deintercalation
processes, yet little is known about Na+ diffusion in NaxFePO4 (0 < x < 1). Here
we use an advanced simulation technique, Randomized Shell Mass Generalized Shadow
Hybrid Monte Carlo Method (RSM-GSHMC) in combination with a specifically developed
force field for describing NaxFePO4 over the whole range of sodium compositions,
to thoroughly examine Na+ diffusion in this material. We reveal a novel mechanism
through which Na+/Fe2+ antisite defect formation halts transport of Na+ in the main
diffusion direction [010], while simultaneously activating diffusion in the [001] channels.
A similar mechanism was reported for Li+ in LiFePO4, suggesting that a transition from
one- to two-dimensional diffusion prompted by antisite defect formation is common to
olivine structures, in general. | en_US |
dc.description.sponsorship | MTM2013-46553-C3-1-P
ENE2016-81020-R
SGI/IZO-SGIker UPV/EHU
i2BASQUE academic network
Barcelona Supercomputer Center | en_US |
dc.format | application/pdf | en_US |
dc.language.iso | eng | en_US |
dc.rights | Reconocimiento-NoComercial-CompartirIgual 3.0 España | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/es/ | en_US |
dc.subject | NaFePO4 | en_US |
dc.subject | energy storage | en_US |
dc.subject | molecular simulation | en_US |
dc.subject | diffusion | en_US |
dc.subject | sampling | en_US |
dc.subject | force field development | en_US |
dc.subject | density functional theory | en_US |
dc.title | Revealing the Mechanism of Sodium Diffusion in NaxFePO4 Using an Improved Force Field | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.identifier.doi | 10.1021/acs.jpcc.8b00230 | |
dc.relation.publisherversion | https://pubs.acs.org/doi/10.1021/acs.jpcc.8b00230 | en_US |
dc.relation.projectID | ES/1PE/SEV-2013-0323 | en_US |
dc.relation.projectID | ES/1PE/MTM2016-76329-R | en_US |
dc.relation.projectID | EUS/BERC/BERC.2014-2017 | en_US |
dc.relation.projectID | EUS/ELKARTEK | en_US |
dc.rights.accessRights | info:eu-repo/semantics/embargoedAccess | en_US |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | en_US |
dc.journal.title | Journal of Physical Chemistry C | en_US |