• English
    • Basque
    • español
  • English 
    • English
    • Basque
    • español
  • Login
Search 
  •   BIRD Home
  • Computational Mathematics (CM)
  • Simulation of Wave Propagation
  • Search
  •   BIRD Home
  • Computational Mathematics (CM)
  • Simulation of Wave Propagation
  • Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search

Show Advanced FiltersHide Advanced Filters

Filtros

Use filtros para refinar sus resultados.

Now showing items 1-5 of 5

  • Opciones de clasificación:
  • Relevancia
  • Título Asc
  • Título Desc
  • Fecha Asc
  • Fecha Desc
  • Resultados por página:
  • 5
  • 10
  • 20
  • 40
  • 60
  • 80
  • 100
Thumbnail

Efficient mass and stiffness matrix assembly via weighted Gaussian quadrature rules for B-splines 

Barton, M.Autoridad BCAM; Puzyrev, V.; Deng, Q.; Calo, V.M. (2019-12-14)
Calabr{\`o} et al. [10] changed the paradigm of the mass and stiffness computation from the traditional element-wise assembly to a row-wise concept, showing that the latter one offers integration that may be orders of ...
Thumbnail

Parallel refined Isogeometric Analysis in 3D 

Siwik, L.; Wozniak, M.; Trujillo, V.; Pardo, D.Autoridad BCAM; Calo, V.M.; Paszynski, M. (2018-11)
We study three-dimensional isogeometric analysis (IGA) and the solution of the resulting system of linear equations via a direct solver. IGA uses highly continuous $C^{p-1}$ basis functions, which provide multiple benefits ...
Thumbnail

Generalization of the Pythagorean Eigenvalue Error Theorem and its Application to Isogeometric Analysis 

Barton, M.Autoridad BCAM; Calo, V.M.; Deng, Q.; Puzyrev, V. (2018-10-13)
This chapter studies the effect of the quadrature on the isogeometric analysis of the wave propagation and structural vibration problems. The dispersion error of the isogeometric elements is minimized by optimally blending ...
Thumbnail

Dispersion-minimizing quadrature rules for $C^1$ quadratic isogeometric analysis 

Deng, Q.; Barton, M.Autoridad BCAM; Puzyrev, V.; Calo, V.M. (2017-09-20)
We develop quadrature rules for the isogeometric analysis of wave propagation and structural vibrations that minimize the discrete dispersion error of the approximation. The rules are optimal in the sense that they only ...
Thumbnail

Gauss-Galerkin quadrature rules for quadratic and cubic spline spaces and their application to isogeometric analysis 

Barton, M.Autoridad BCAM; Calo, V.M. (2016-07-01)
We introduce Gaussian quadrature rules for spline spaces that are frequently used in Galerkin discretizations to build mass and stiffness matrices. By definition, these spaces are of even degrees. The optimal quadrature ...

DSpace software copyright © 2002-2022  LYRASIS
Contact Us | Send Feedback
 

 

Browse

All of BIRDCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Descubre

Author
Calo, V.M. (5)
Barton, M. (4)Deng, Q. (3)Puzyrev, V. (3)Pardo, D. (1)Paszyński, M. (1)Siwik, L. (1)Trujillo, V. (1)Wozniak, M. (1)Subject
isogeometric analysis (5)
B-splines (2)direct solvers (1)dispersion analysis (1)dispersion error (1)Galerkin method (1)Gaussian quadrature (1)homotopy continuation for quadrature (1)mass and stiffness matrix assembly (1)optimal quadrature rules (1)... másFecha2019 (1)2018 (2)2017 (1)2016 (1)

DSpace software copyright © 2002-2022  LYRASIS
Contact Us | Send Feedback