Show simple item record

dc.contributor.authorPortilla Cuadrado P.en_US
dc.date.accessioned2018-05-29T15:43:15Z
dc.date.available2018-05-29T15:43:15Z
dc.date.issued2018-02-10
dc.identifier.urihttp://hdl.handle.net/20.500.11824/801
dc.description.abstractTête-à-tête graphs and relative tête-à-tête graphs were introduced by N. A’Campo in 2010 to model monodromies of isolated plane curves. By recent work of Fdez de Bobadilla, Pe Pereira and the author, they provide a way of modeling the periodic mapping classes that leave some boundary component invariant. In this work we introduce the notion of general tête-à-tête graph and prove that they model all periodic mapping classes. We also describe algorithms that take a Seifert manifold and a horizontal surface and return a tête-à-tête graph and vice versa.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.relationinfo:eu-repo/grantAgreement/EC/FP7/615655en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectmapping class groupen_US
dc.subjecttopological surfaceen_US
dc.subjectlow dimensional topologyen_US
dc.titleGeneral tête-à-tête graphs and Seifert manifoldsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeinfo:eu-repo/semantics/submittedVersionen_US
dc.identifier.arxiv1712.05975
dc.relation.publisherversionhttps://arxiv.org/abs/1712.05975en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess