dc.contributor.author | Portilla Cuadrado, P. | |
dc.date.accessioned | 2018-05-29T15:43:15Z | |
dc.date.available | 2018-05-29T15:43:15Z | |
dc.date.issued | 2018-02-10 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11824/801 | |
dc.description.abstract | Tête-à-tête graphs and relative tête-à-tête graphs were introduced by N.
A’Campo in 2010 to model monodromies of isolated plane curves. By recent work of
Fdez de Bobadilla, Pe Pereira and the author, they provide a way of modeling the periodic
mapping classes that leave some boundary component invariant. In this work we introduce
the notion of general tête-à-tête graph and prove that they model all periodic mapping
classes. We also describe algorithms that take a Seifert manifold and a horizontal surface
and return a tête-à-tête graph and vice versa. | en_US |
dc.format | application/pdf | en_US |
dc.language.iso | eng | en_US |
dc.rights | Reconocimiento-NoComercial-CompartirIgual 3.0 España | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/es/ | en_US |
dc.subject | mapping class group | en_US |
dc.subject | topological surface | en_US |
dc.subject | low dimensional topology | en_US |
dc.title | Universal spectral features of different classes of random diffusivity processes | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.identifier.arxiv | 1712.05975 | |
dc.relation.publisherversion | https://arxiv.org/abs/1712.05975 | en_US |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/615655 | en_US |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | en_US |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | en_US |