dc.contributor.author | Cassano, B. | |
dc.date.accessioned | 2018-06-15T11:11:27Z | |
dc.date.available | 2018-06-15T11:11:27Z | |
dc.date.issued | 2018 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11824/813 | |
dc.description.abstract | We determine the fastest possible rate of exponential decay at
infinity for eigenfunctions of the Dirac operator $\mathcal D_n + \mathbb V$, being
$\mathcal D_n$ the massless Dirac operator in dimensions $n=2,3$ and $\mathbb V$ a
matrix-valued perturbation such that
$|\mathbb V(x)| \sim |x|^{-\epsilon}$ at infinity, for
$\epsilon < 1$.
Moreover, we provide explicit
examples of solutions that have the prescripted
decay, in presence of a potential with the related behaviour at
infinity, proving that our results are sharp.
This work is a result of unique continuation from infinity. | en_US |
dc.description.sponsorship | INDAM - Istituto Italiano di Alta Matematica | en_US |
dc.format | application/pdf | en_US |
dc.language.iso | eng | en_US |
dc.rights | Reconocimiento-NoComercial-CompartirIgual 3.0 España | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/es/ | en_US |
dc.subject | Dirac operator, unique continuation, complex potentials, localization of eigenfunctions | en_US |
dc.title | Sharp exponential localization for eigenfunctions of the Dirac Operator | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.identifier.arxiv | arXiv:1803.00603 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/669689 | en_US |
dc.relation.projectID | ES/1PE/SEV-2013-0323 | en_US |
dc.relation.projectID | ES/1PE/MTM2014-53145-P | en_US |
dc.relation.projectID | EUS/BERC/BERC.2014-2017 | en_US |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | en_US |
dc.type.hasVersion | info:eu-repo/semantics/submittedVersion | en_US |