Show simple item record

dc.contributor.authorCassano, B.
dc.date.accessioned2018-06-15T11:11:27Z
dc.date.available2018-06-15T11:11:27Z
dc.date.issued2018
dc.identifier.urihttp://hdl.handle.net/20.500.11824/813
dc.description.abstractWe determine the fastest possible rate of exponential decay at infinity for eigenfunctions of the Dirac operator $\mathcal D_n + \mathbb V$, being $\mathcal D_n$ the massless Dirac operator in dimensions $n=2,3$ and $\mathbb V$ a matrix-valued perturbation such that $|\mathbb V(x)| \sim |x|^{-\epsilon}$ at infinity, for $\epsilon < 1$. Moreover, we provide explicit examples of solutions that have the prescripted decay, in presence of a potential with the related behaviour at infinity, proving that our results are sharp. This work is a result of unique continuation from infinity.en_US
dc.description.sponsorshipINDAM - Istituto Italiano di Alta Matematicaen_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectDirac operator, unique continuation, complex potentials, localization of eigenfunctionsen_US
dc.titleSharp exponential localization for eigenfunctions of the Dirac Operatoren_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.arxivarXiv:1803.00603
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/669689en_US
dc.relation.projectIDES/1PE/SEV-2013-0323en_US
dc.relation.projectIDES/1PE/MTM2014-53145-Pen_US
dc.relation.projectIDEUS/BERC/BERC.2014-2017en_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/submittedVersionen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España