Show simple item record

dc.contributor.authorBeltran, D.
dc.contributor.authorHickman, J.
dc.contributor.authorSogge, C.D.
dc.date.accessioned2018-07-10T15:30:23Z
dc.date.available2018-07-10T15:30:23Z
dc.date.issued2018
dc.identifier.urihttp://hdl.handle.net/20.500.11824/826
dc.description.abstractThe sharp Wolff-type decoupling estimates of Bourgain--Demeter are extended to the variable coefficient setting. These results are applied to obtain new sharp local smoothing estimates for wave equations on compact Riemannian manifolds, away from the endpoint regularity exponent. More generally, local smoothing estimates are established for a natural class of Fourier integral operators; at this level of generality the results are sharp in odd dimensions, both in terms of the regularity exponent and the Lebesgue exponent.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.titleVariable coefficient Wolff-type inequalities and sharp local smoothing estimates for wave equations on manifoldsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.arxivarXiv:1801.06910
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/669689en_US
dc.relation.projectIDES/1PE/SEV-2013-0323en_US
dc.relation.projectIDES/1PE/MTM2014-53850-Pen_US
dc.relation.projectIDEUS/BERC/BERC.2014-2017en_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/submittedVersionen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España