dc.contributor.author | Beltran, D. | |
dc.contributor.author | Ramos, J.P. | |
dc.contributor.author | Saari, O. | |
dc.date.accessioned | 2018-07-10T15:31:33Z | |
dc.date.available | 2018-07-10T15:31:33Z | |
dc.date.issued | 2018 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11824/827 | |
dc.description.abstract | We prove endpoint bounds for derivatives of fractional maximal functions with either smooth convolution kernel or lacunary set of radii in dimensions $n \geq 2$. We also show that the spherical fractional maximal function maps $L^p$ into a first order Sobolev space in dimensions $n \geq 5$. | en_US |
dc.format | application/pdf | en_US |
dc.language.iso | eng | en_US |
dc.rights | Reconocimiento-NoComercial-CompartirIgual 3.0 España | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/es/ | en_US |
dc.title | Regularity of fractional maximal functions through Fourier multipliers | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.identifier.arxiv | arXiv:1803.02581 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/669689 | en_US |
dc.relation.projectID | ES/1PE/SEV-2013-0323 | en_US |
dc.relation.projectID | ES/1PE/MTM2014-53850-P | en_US |
dc.relation.projectID | EUS/BERC/BERC.2014-2017 | en_US |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | en_US |
dc.type.hasVersion | info:eu-repo/semantics/submittedVersion | en_US |