dc.contributor.author | Fanelli, L. | |
dc.contributor.author | Krejcirik, D. | |
dc.contributor.author | Laptev, A. | |
dc.contributor.author | Vega, L. | |
dc.date.accessioned | 2018-07-28T10:19:34Z | |
dc.date.available | 2018-07-28T10:19:34Z | |
dc.date.issued | 2018-07-12 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11824/830 | |
dc.description.abstract | We establish magnetic improvements upon the classical Hardy inequality for two specific choices of singular magnetic fields. First, we consider the Aharonov-Bohm field in all dimensions and establish a sharp Hardy-type inequality that takes into account both the dimensional as well as the magnetic flux contributions. Second, in the three-dimensional Euclidean space, we derive a non-trivial magnetic Hardy inequality for a magnetic field that vanishes at infinity and diverges along a plane. | en_US |
dc.format | application/pdf | en_US |
dc.language.iso | eng | en_US |
dc.rights | Reconocimiento-NoComercial-CompartirIgual 3.0 España | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/es/ | en_US |
dc.title | On the improvement of the Hardy inequality due to singular magnetic fields | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.identifier.arxiv | arXiv:1807.04430 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/669689 | en_US |
dc.relation.projectID | ES/1PE/SEV-2013-0323 | en_US |
dc.relation.projectID | ES/1PE/MTM2014-53145-P | en_US |
dc.relation.projectID | EUS/BERC/BERC.2014-2017 | en_US |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | en_US |
dc.type.hasVersion | info:eu-repo/semantics/submittedVersion | en_US |