Show simple item record

dc.contributor.authorLászló, T.
dc.contributor.authorNagy, J.
dc.contributor.authorNémethi, A. 
dc.date.accessioned2018-08-28T12:54:49Z
dc.date.available2018-08-28T12:54:49Z
dc.date.issued2018-06
dc.identifier.urihttp://hdl.handle.net/20.500.11824/847
dc.description.abstractAssume that the link of a complex normal surface singularity is a rational homology sphere. Then its Seiberg-Witten invariant can be computed as the ‘periodic constant’ of the topological multivariable Poincaré series (zeta function). This involves a complicated regularization procedure (via quasipolynomials measuring the asymptotic behaviour of the coefficients). We show that the (a Gorenstein type) symmetry of the zeta function combined with Ehrhart–Macdonald–Stanley reciprocity (of Ehrhart theory of polytopes) provide a simple expression for the periodic cosntant. Using these dualities we also find a multivariable polynomial generalization of the Seiberg–Witten invariant, and we compute it in terms of lattice points of certain polytopes. All these invariants are also determined via lattice point counting, in this way we establish a completely general topological analogue of formulae of Khovanskii and Morales valid for singularities with non-degenerate Newton principal part.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectnormal surface singularitiesen_US
dc.subjectSeiberg-Witten invariantsen_US
dc.subjectquasipolynomialsen_US
dc.subjectperiodic constanten_US
dc.subjectEhrhart polynomialsen_US
dc.subjectEhrhart–Macdonald–Stanley reciprocity lawen_US
dc.subjectGorenstein dualityen_US
dc.titleCombinatorial duality for Poincaré series, polytopes and invariants of plumbed 3-manifoldsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.arxivarXiv:1805.03457v2
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/615655en_US
dc.relation.projectIDES/1PE/SEV-2013-0323en_US
dc.relation.projectIDEUS/BERC/BERC.2014-2017en_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España