dc.contributor.author | László, T. | |
dc.contributor.author | Nagy, J. | |
dc.contributor.author | Némethi, A. | |
dc.date.accessioned | 2018-08-28T12:55:18Z | |
dc.date.available | 2018-08-28T12:55:18Z | |
dc.date.issued | 2017-02 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11824/848 | |
dc.description.abstract | Assume that $M(\mathcal{T})$ is a rational homology sphere plumbed 3--manifold associated with a connected negative definite graph $\mathcal{T}$. We consider the combinatorial multivariable Poincar\'e series associated with $\mathcal{T}$ and its counting functions, which encode rich topological information. Using the `periodic constant' of the series (with reduced variables) we prove surgery formulae for the normalized Seiberg--Witten invariants: the periodic constant appears as the difference of the Seiberg--Witten invariants associated with $M(\mathcal{T})$ and $M(\mathcal{T}\setminus \mathcal{I})$, where $\mathcal{I}$ is an arbitrary subset of the set of vertices of $\mathcal{T}$. | en_US |
dc.format | application/pdf | en_US |
dc.language.iso | eng | en_US |
dc.rights | Reconocimiento-NoComercial-CompartirIgual 3.0 España | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/es/ | en_US |
dc.subject | Seiberg-Witten invariants | en_US |
dc.subject | surgery formulae | en_US |
dc.subject | plumbed 3-manifold | en_US |
dc.subject | links of surface singularities | en_US |
dc.title | Surgery formulae for the Seiberg-Witten invariant of plumbed 3-manifolds | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.identifier.arxiv | arXiv:1702.06692v1 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/615655 | en_US |
dc.relation.projectID | ES/1PE/SEV-2013-0323 | en_US |
dc.relation.projectID | EUS/BERC/BERC.2014-2017 | en_US |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | en_US |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | en_US |