Show simple item record

dc.contributor.authorLászló, T.
dc.contributor.authorNagy, J.
dc.contributor.authorNémethi, A. 
dc.date.accessioned2018-08-28T12:55:18Z
dc.date.available2018-08-28T12:55:18Z
dc.date.issued2017-02
dc.identifier.urihttp://hdl.handle.net/20.500.11824/848
dc.description.abstractAssume that $M(\mathcal{T})$ is a rational homology sphere plumbed 3--manifold associated with a connected negative definite graph $\mathcal{T}$. We consider the combinatorial multivariable Poincar\'e series associated with $\mathcal{T}$ and its counting functions, which encode rich topological information. Using the `periodic constant' of the series (with reduced variables) we prove surgery formulae for the normalized Seiberg--Witten invariants: the periodic constant appears as the difference of the Seiberg--Witten invariants associated with $M(\mathcal{T})$ and $M(\mathcal{T}\setminus \mathcal{I})$, where $\mathcal{I}$ is an arbitrary subset of the set of vertices of $\mathcal{T}$.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectSeiberg-Witten invariantsen_US
dc.subjectsurgery formulaeen_US
dc.subjectplumbed 3-manifolden_US
dc.subjectlinks of surface singularitiesen_US
dc.titleSurgery formulae for the Seiberg-Witten invariant of plumbed 3-manifoldsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.arxivarXiv:1702.06692v1
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/615655en_US
dc.relation.projectIDES/1PE/SEV-2013-0323en_US
dc.relation.projectIDEUS/BERC/BERC.2014-2017en_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España