dc.contributor.author | Scrobogna, S. | |
dc.date.accessioned | 2018-10-02T09:29:10Z | |
dc.date.available | 2018-10-02T09:29:10Z | |
dc.date.issued | 2018-10 | |
dc.identifier.issn | 0022-247X | |
dc.identifier.uri | http://hdl.handle.net/20.500.11824/865 | |
dc.description.abstract | We prove that there exist infinitely many distributional solutions with infinite kinetic energy to both the incompressible Navier-Stokes equations in $ \mathbb{R}^2 $ and Burgers equation in $\mathbb{R} $ with vanishing initial data. | en_US |
dc.format | application/pdf | en_US |
dc.language.iso | eng | en_US |
dc.rights | Reconocimiento-NoComercial-CompartirIgual 3.0 España | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/es/ | en_US |
dc.subject | Navier Stokes, distributional solutions | en_US |
dc.title | Some remark on the existence of infinitely many nonphysical solutions to the incompressible Navier-Stokes equations | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.relation.projectID | ES/1PE/SEV-2017-0718 | en_US |
dc.relation.projectID | ES/1PE/MTM2017-82184-R | en_US |
dc.relation.projectID | EUS/BERC/BERC.2018-2021 | en_US |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | en_US |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | en_US |
dc.journal.title | Journal of Mathematical Analysis and Applications | en_US |