Show simple item record

dc.contributor.authorFernandes, A.
dc.contributor.authorFernández de Bobadilla, J. 
dc.contributor.authorSampaio, J.E.
dc.date.accessioned2018-10-21T16:45:56Z
dc.date.available2018-10-21T16:45:56Z
dc.date.issued2018-08-29
dc.identifier.issn1753-841
dc.identifier.urihttp://hdl.handle.net/20.500.11824/881
dc.description.abstractWe study invariance of multiplicity of complex analytic germs and degree of complex affine sets under outer bi-Lipschitz transformations (outer bi-Lipschitz homeomorphims of germs in the first case and outer bi-Lipschitz homeomorphims at infinity in the second case). We prove that invariance of multiplicity in the local case is equivalent to invariance of degree in the global case. We prove invariance for curves and surfaces. In the way we prove invariance of the tangent cone and relative multiplicities at infinity under outer bi-Lipschitz homeomorphims at infinity, and that the abstract topology of a homogeneous surface germ determines its multiplicity.en_US
dc.description.sponsorshipThe first named author is partially supported by IAS and by ERCEA 615655 NMST Consolidator Grant, MINECO by the project reference MTM2013-45710-C2-2-P, by the Basque Government through the BERC 2014-2017 program, by Spanish Ministry of Economy and Competitiveness MINECO: BCAM Severo Ochoa excellence accreditation SEV-2013-0323, by Bolsa Pesquisador Visitante Especial (PVE) - Ciencias sem Fronteiras/CNPq Project number: 401947/2013-0 and by Spanish MICINN project MTM2013-45710-C2-2-P. The second named author was partially supported by CNPq-Brazil grant 302764/2014-7. The third named author was partially supported by the ERCEA 615655 NMST Consolidator Grant and also by the Basque Government through the BERC 2014-2017 program and by Spanish Ministry of Economy and Competitiveness MINECO: BCAM Severo Ochoa excellence accreditation SEV-2013-0323.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.titleMultiplicity and degree as bi‐Lipschitz invariants for complex setsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.doi10.1112/topo.12080
dc.relation.publisherversionhttps://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/topo.12080en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/615655en_US
dc.relation.projectIDES/1PE/SEV-2013-0323en_US
dc.relation.projectIDEUS/BERC/BERC.2014-2017en_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersionen_US
dc.journal.titleJournal of Topologyen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España