• English
    • Basque
    • español
  • español 
    • English
    • Basque
    • español
  • Login
Buscar 
  •   BIRD Principal
  • Data Science (DS)
  • Buscar
  •   BIRD Principal
  • Data Science (DS)
  • Buscar
JavaScript is disabled for your browser. Some features of this site may not work without it.

Buscar

Mostrar filtros avanzadosOcultar filttos avanzados

Filtros

Use filtros para refinar sus resultados.

Mostrando ítems 1-10 de 207

  • Opciones de clasificación:
  • Relevancia
  • Título Asc
  • Título Desc
  • Fecha Asc
  • Fecha Desc
  • Resultados por página:
  • 5
  • 10
  • 20
  • 40
  • 60
  • 80
  • 100
Thumbnail

A Machine Learning Approach to Predict Healthcare Cost of Breast Cancer Patients 

Rakshit P.; Zaballa-Larumbe O.; Pérez A.; Gomez-Inhiesto E.; Acaiturri-Ayesta M.T.; Lozano J.A. (Scientific Reports, Springer Nature, 2021)
This paper presents a novel machine learning approach to per- form an early prediction of the healthcare cost of breast cancer patients. The learning phase of our prediction method considers the following two steps: i) in ...
Thumbnail

General supervision via probabilistic transformations 

Mazuelas S.; Perez A. (Proceedings of the 24th European Conference on Artificial Intelligence-ECAI, 2020-08-01)
Different types of training data have led to numerous schemes for supervised classification. Current learning techniques are tailored to one specific scheme and cannot handle general ensembles of training samples. This ...
Thumbnail

Advances on Time Series Analysis using Elastic Measures of Similarity 

Oregui I. (2020-07-23)
A sequence is a collection of data instances arranged in a structured manner. When this arrangement is held in the time domain, sequences are instead referred to as time series. As such, each observation in a time series ...
Thumbnail

Kernels of Mallows Models under the Hamming Distance for solving the Quadratic Assignment Problem 

Arza E.; Pérez A.; Irurozki E.; Ceberio J. (Swarm and Evolutionary Computation, 2020-07)
The Quadratic Assignment Problem (QAP) is a well-known permutation-based combinatorial optimization problem with real applications in industrial and logistics environments. Motivated by the challenge that this NP-hard ...
Thumbnail

Journey to the center of the linear ordering problem 

Hernando L.; Mendiburu A.; Lozano J.A. (GECCO '20: Proceedings of the 2020 Genetic and Evolutionary Computation Conference, 2020-06)
A number of local search based algorithms have been designed to escape from the local optima, such as, iterated local search or variable neighborhood search. The neighborhood chosen for the local search as well as the ...
Thumbnail

A General Framework for Prediction in Generalized Additive Models 

Carballo A. (2020-01-13)
Smoothing techniques have become one of the most popular modelling approaches in the unidimensional and multidimensional setting. However, out-of-sample prediction in the context of smoothing models is still an open problem ...
Thumbnail

Modelling species presence–absence in the ecological niche theory framework using shape-constrained generalized additive models 

Citores L.; Ibaibarriaga L.; Lee D.-J.; Brewer M.J.; Santos M.; Chust G. (Ecological Modelling, 2020-01-13)
According to ecological niche theory, species response curves are unimodal with respect to environmental gradients. A variety of statistical methods have been developed for species distribution modelling. A general problem ...
Thumbnail

Mutual information based feature subset selection in multivariate time series classification 

Ircio J.; Lojo A.; Mori U.; Lozano J.A. (Pattern Recognition, 2020)
This paper deals with supervised classification of multivariate time se- ries. In particular, the goal is to propose a filter method to select a subset of time series. Consequently, we adopt the framework proposed by Brown ...
Thumbnail

in-depth analysis of SVM kernel learning and its components 

Roman I.; Santana R.; Mendiburu A.; Lozano J.A. (Neural Computing and Applications, 2020)
The performance of support vector machines in non-linearly-separable classification problems strongly relies on the kernel function. Towards an automatic machine learning approach for this technique, many research outputs ...
Thumbnail

Optimization of deep learning precipitation models using categorical binary metrics 

Larraondo P.R.; Renzullo L.J.; Van Dijk A.I.J.M.; Inza I.; Lozano J.A. (Journal of Advances in Modeling Earth Systems, 2020)
This work introduces a methodology for optimizing neural network models using a combination of continuous and categorical binary indices in the context of precipitation forecasting. Probability of detection or false alarm ...
  • 1
  • 2
  • 3
  • 4
  • . . .
  • 21

DSpace software copyright © 2002-2015  DuraSpace
Contacto | Sugerencias
 

 

Listar

Todo BIRDComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasEsta comunidadPor fecha de publicaciónAutoresTítulosMaterias

Mi cuenta

Acceder

Descubre

AutorLozano J.A. (51)Del Ser J. (37)Lee D.-J. (18)Ayesta U. (17)Arostegui I. (15)Mendiburu A. (15)Pérez A. (15)Rodríguez-Álvarez M.X. (15)Ceberio J. (14)Jacko P. (12)... másMateriaOptimization (9)Aerospace Engineering (6)Evolutionary Algorithm (6)Harmony Search (6)Spacecraft (5)Opportunistic scheduling (4)Stability (4)Whittle index (4)Ant Colony Optimization (3)categorisation (3)... másFecha2020 - 2021 (20)2010 - 2019 (181)2009 - 2009 (3)

DSpace software copyright © 2002-2015  DuraSpace
Contacto | Sugerencias