A jacobian module for disentanglements and applications to Mond's conjecture
Abstract
Let $f:(\mathbb C^n,S)\to (\mathbb C^{n+1},0)$ be a germ whose image is given by $g=0$. We define an $\mathcal O_{n+1}$-module $M(g)$ with the property that $\mathscr A_e$-$\operatorname{codim}(f)\le \dim_\mathbb C M(g)$, with equality if
$f$ is weighted homogeneous.
We also define a relative version $M_y(G)$ for unfoldings $F$, in such a way that $M_y(G)$ specialises to $M(g)$ when $G$ specialises to $g$. The main result is that if $(n,n+1)$ are
nice dimensions, then $\dim_\mathbb C M(g)\ge \mu_I(f)$, with equality if and only if $M_y(G)$ is Cohen-Macaulay, for some stable unfolding $F$. Here, $\mu_I(f)$ denotes the image
Milnor number of $f$, so that if $M_y(G)$ is Cohen-Macaulay, then Mond's conjecture holds for $f$; furthermore, if $f$ is weighted homogeneous, Mond's conjecture for $f$ is
equivalent to the fact that $M_y(G)$ is Cohen-Macaulay. Finally, we observe that to prove Mond's conjecture, it is enough to
prove it in a suitable family of examples.