Show simple item record

dc.contributor.authorGarcía Daza, F.A.
dc.contributor.authorBonilla, M.R.
dc.contributor.authorLlordés, A.
dc.contributor.authorCarrasco, J.
dc.contributor.authorAkhmatskaya, E. 
dc.date.accessioned2019-01-21T10:41:15Z
dc.date.available2019-01-21T10:41:15Z
dc.date.issued2018-01-09
dc.identifier.issn19448244
dc.identifier.urihttp://hdl.handle.net/20.500.11824/913
dc.description.abstractGarnet-structured Li$_{7}$La$_{3}$Zr$_{2}$O$_{12}$ is a promising solid electrolyte for next-generation solid-state Li batteries. However, sufficiently fast Li-ion mobility required for battery applications only emerges at high temperatures, upon a phase transition to cubic structure. A well-known strategy to stabilize the cubic phase at room temperature relies on aliovalent substitution; in particular, the substitution of Li$^{+}$ by Al$^{3+}$ and Ga$^{3+}$ ions. Yet, despite having the same formal charge, Ga$^{3+}$ substitution yields higher conductivities ($10^{-3}$~S/cm) than Al$^{3+}$ ($10^{-4}$~S/cm). The reason of such difference in ionic conductivity remains a mystery. Here we use molecular dynamic simulations and advanced sampling techniques to precisely unveil the atomistic origin of this phenomenon. Our results show that Li$^{+}$ vacancies generated by Al$^{3+}$ and Ga$^{3+}$ substitution remain adjacent to Ga$^{3+}$ and Al$^{3+}$ ions, without contributing to the promotion of Li$^{+}$ mobility. However, while Ga$^{3+}$ ions tend to allow limited Li$^{+}$ diffusion within their immediate surroundings, the less repulsive interactions associated with Al$^{3+}$ ions lead to a complete blockage of neighboring Li$^{+}$ diffusion paths. This effect is magnified at lower temperatures, and explains the higher conductivities observed for Ga-substituted systems. Overall this study provides a valuable insight into the fundamental ion transport mechanism in the bulk of Ga/Al-substituted Li$_{7}$La$_{3}$Zr$_{2}$O$_{12}$ and paves the way for rationalizing aliovalent substitution design strategies for enhancing ionic transport in these materials.en_US
dc.description.sponsorshipENE2016-81020-R (MINECO)en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectSolid electrolytesen_US
dc.subjectGa/Al-substituted LLZOen_US
dc.subjectMolecular Dynamicsen_US
dc.subjectenhanced sampling hybrid Monte Carloen_US
dc.subjectGSHMCen_US
dc.subjectLi-ion conductivity/diffusionen_US
dc.titleAtomistic Insight into Ion Transport and Conductivity in Ga/Al-Substituted Li$_7$La$_3$Zr$_2$O$_{12}$ Solid Electrolytesen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.doi10.1021/acsami.8b17217
dc.relation.publisherversionhttps://doi.org/10.1021/acsami.8b17217en_US
dc.relation.projectIDES/1PE/SEV-2017-0718en_US
dc.relation.projectIDES/1PE/MTM2016-76329-Ren_US
dc.relation.projectIDEUS/BERC/BERC.2018-2021en_US
dc.relation.projectIDEUS/ELKARTEKen_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionen_US
dc.journal.titleACS Applied Materials & Interfacesen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España