Show simple item record

dc.contributor.authorWang, Y.
dc.contributor.authorCanevari, G.
dc.contributor.authorMajumdar, A.
dc.date.accessioned2019-04-01T14:37:49Z
dc.date.available2019-04-01T14:37:49Z
dc.date.issued2019-03-30
dc.identifier.issn0036-1399
dc.identifier.urihttp://hdl.handle.net/20.500.11824/961
dc.description.abstracte study a modified Landau-de Gennes model for nematic liq- uid crystals, where the elastic term is assumed to be of subquadratic growth in the gradient. We analyze the behaviour of global minimizers in two- and three-dimensional domains, subject to uniaxial boundary conditions, in the asymptotic regime where the length scale of the defect cores is small com- pared to the length scale of the domain. We obtain uniform convergence of the minimizers and of their gradients, away from the singularities of the limiting uniaxial map. We also demonstrate the presence of maximally biaxial cores in minimizers on two-dimensional domains, when the temperature is sufficiently low.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.titleOrder Reconstruction for neatics on squares with isotropic inclusions: A Landau-de Gennes studyen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.relation.projectIDES/1PE/SEV-2017-0718en_US
dc.relation.projectIDES/1PE/MTM2017-82184-Ren_US
dc.relation.projectIDEUS/BERC/BERC.2018-2021en_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersionen_US
dc.journal.titleSIAM Journal on Applied Mathematicsen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España