Show simple item record

dc.contributor.authorFernandes A.en_US
dc.contributor.authorSampaio J. E.en_US
dc.date.accessioned2019-05-01T08:16:37Z
dc.date.available2019-05-01T08:16:37Z
dc.date.issued2019-02-26
dc.identifier.issn1050-6926
dc.identifier.urihttp://hdl.handle.net/20.500.11824/970
dc.description.abstractWe prove that any complex analytic set in $\mathbb{C}^n$ which is Lipschitz normally embedded at infinity and has tangent cone at infinity that is a linear subspace of $\mathbb{C}^n$ must be an affine linear subspace of $\mathbb{C}^n$ itself. No restrictions on the singular set, dimension nor codimension are required. In particular, any complex algebraic set in $\mathbb{C}^n$ which is Lipschitz regular at infinity is an affine linear subspace.en_US
dc.description.sponsorshipThe first named author was partially supported by CNPq-Brazil grant 302764/2014-7en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.publisherThe Journal of Geometric Analysisen_US
dc.relationinfo:eu-repo/grantAgreement/EC/FP7/615655en_US
dc.relationES/1PE/SEV-2017-0718en_US
dc.relationEUS/BERC/BERC.2018-2021en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.subjectLipschitz regularityen_US
dc.subjectTangent cone at infinityen_US
dc.subjectalgebraic setsen_US
dc.titleOn Lipschitz rigidity of complex analytic setsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeinfo:eu-repo/semantics/publishedVersionen_US
dc.identifier.arxiv1705.03085
dc.identifier.doi10.1007/s12220-019-00162-x
dc.relation.publisherversionhttps://doi.org/10.1007/s12220-019-00162-xen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess