Show simple item record

dc.contributor.authorEllero, M. 
dc.contributor.authorNavarini, L.
dc.description.abstractA mesoscopic model for the simulation of espresso extraction based on the Smoothed Particle Hydrodynamics method is presented. The model incorporates some essential features such as bimodal granulometry (fines-coarses) of the coffee bed, double (liquid/intra-granular) molecular diffusion and solid-liquid release mechanism. The porous structures ('coarses') are modelled as stationary solid regions whereas the migration of cellular fragments ('fines') is described by single-particles advected by the flow. The boundary filter is modelled as a buffer region where fines are immobilized while entering it, therefore providing a transient flow impedance. The model captures well the transient permeability of the coffee bed under direct-inverse discharge observed in experiments, showing the importance of fines migration on the hydrodynamics of the extraction. The concentration kinetics for different molecular compounds (i.e caffeine, trigonelline and chlorogenic acid) are compared to experimental data for a traditional espresso extraction, showing excellent results. The present work lays down the basis for the virtual analysis of coffee flavors by monitoring the hydrodynamic and microstructural effects on the balance of extracted key-odorant or taste-actives compounds in the beverage.en_US
dc.description.sponsorshipProject RTI2018-094595-B-I00 funded by (AEI/FEDER, UE) and acronym “VIRHACOST”en_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.titleMesoscopic modelling and simulation of espresso coffee extractionen_US
dc.journal.titleJournal of Food Engineeringen_US

Files in this item


This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España