Show simple item record

dc.contributor.authorCassano, B.
dc.contributor.authorPizzichillo, F.
dc.contributor.authorVega, L. 
dc.date.accessioned2019-07-03T17:56:37Z
dc.date.available2019-07-03T17:56:37Z
dc.date.issued2019-06
dc.identifier.issn1139-1138
dc.identifier.urihttp://hdl.handle.net/20.500.11824/991
dc.description.abstractWe prove a sharp Hardy-type inequality for the Dirac operator. We exploit this inequality to obtain spectral properties of the Dirac operator perturbed with Hermitian matrix-valued potentials $\mathbf V$ of Coulomb type: we characterise its eigenvalues in terms of the Birman—Schwinger principle and we bound its discrete spectrum from below, showing that the ground-state energy is reached if and only if $\mathbf V$ verifies some rigidity conditions. In the particular case of an electrostatic potential, these imply that $\mathbf V$ is the Coulomb potential.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.rightsReconocimiento-NoComercial-CompartirIgual 3.0 Españaen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/en_US
dc.titleA Hardy-type inequality and some spectral characterizations for the Dirac–Coulomb operatoren_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.doi10.1007/s13163-019-00311-4
dc.relation.publisherversionhttps://doi.org/10.1007/s13163-019-00311-4en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/669689en_US
dc.relation.projectIDES/1PE/SEV-2017-0718en_US
dc.relation.projectIDEUS/BERC/BERC.2018-2021en_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionen_US
dc.journal.titleRevista Matemática Complutenseen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Reconocimiento-NoComercial-CompartirIgual 3.0 España