dc.contributor.author | Cassano, B. | |
dc.contributor.author | Pizzichillo, F. | |
dc.contributor.author | Vega, L. | |
dc.date.accessioned | 2019-07-03T17:56:37Z | |
dc.date.available | 2019-07-03T17:56:37Z | |
dc.date.issued | 2019-06 | |
dc.identifier.issn | 1139-1138 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11824/991 | |
dc.description.abstract | We prove a sharp Hardy-type inequality for the Dirac operator. We exploit this inequality to obtain spectral properties of the Dirac operator perturbed with Hermitian matrix-valued potentials $\mathbf V$ of Coulomb type: we characterise its eigenvalues in terms of the Birman—Schwinger principle and we bound its discrete spectrum from below, showing that the ground-state energy is reached if and only if $\mathbf V$ verifies some rigidity conditions. In the particular case of an electrostatic potential, these imply that $\mathbf V$ is the Coulomb potential. | en_US |
dc.format | application/pdf | en_US |
dc.language.iso | eng | en_US |
dc.rights | Reconocimiento-NoComercial-CompartirIgual 3.0 España | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/es/ | en_US |
dc.title | A Hardy-type inequality and some spectral characterizations for the Dirac–Coulomb operator | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.identifier.doi | 10.1007/s13163-019-00311-4 | |
dc.relation.publisherversion | https://doi.org/10.1007/s13163-019-00311-4 | en_US |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/669689 | en_US |
dc.relation.projectID | ES/1PE/SEV-2017-0718 | en_US |
dc.relation.projectID | EUS/BERC/BERC.2018-2021 | en_US |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | en_US |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | en_US |
dc.journal.title | Revista Matemática Complutense | en_US |