A Lê-Greuel type formula for the image Milnor number
Fecha
2019-02Metadatos
Mostrar el registro completo del ítemResumen
Let $f\colon (\mathbb{C}^n,0)\to (\mathbb{C}^{n+1},0)$ be a corank 1 finitely determined map germ. For a generic linear form $p\colon (\mathbb{C}^{n+1},0)\to(\mathbb{C},0)$ we denote by $g\colon (\mathbb{C}^{n-1},0)\to (\mathbb{C}^{n},0)$ the transverse slice of $f$ with respect to $p$. We prove that the sum of the image Milnor numbers $\mu_I(f)+\mu_I(g)$ is equal to the number of critical points of $p|_{X_s}\colon X_s\to\mathbb{C}$ on all the strata of $X_s$, where $X_s$ is the disentanglement of $f$ (i.e., the image of a stabilisation $f_s$ of $f$).