Endpoint Sobolev continuity of the fractional maximal function in higher dimensions
Abstract
We establish continuity mapping properties of the non-centered fractional maximal operator $M_{\beta}$ in the endpoint input space $W^{1,1}(\mathbb{R}^d)$ for $d \geq 2$ in the cases for which its boundedness is known. More precisely, we prove that for $q=d/(d-\beta)$ the map $f \mapsto |\nabla M_\beta f|$ is continuous from $W^{1,1}(\mathbb{R}^d)$ to $L^{q}(\mathbb{R}^d)$ for $ 0 < \beta < 1$ if $f$ is radial and for $1 \leq \beta < d$ for general $f$. The results for $1\leq \beta < d$ extend to the centered counterpart $M_\beta^c$. Moreover, if $d=1$, we show that the conjectured boundedness of that map for $M_\beta^c$ implies its continuity.