dc.contributor.author | Beltran, D. | |
dc.contributor.author | Madrid, J. | |
dc.date.accessioned | 2019-07-26T18:58:15Z | |
dc.date.available | 2019-07-26T18:58:15Z | |
dc.date.issued | 2019 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11824/995 | |
dc.description.abstract | We establish continuity mapping properties of the non-centered fractional maximal operator $M_{\beta}$ in the endpoint input space $W^{1,1}(\mathbb{R}^d)$ for $d \geq 2$ in the cases for which its boundedness is known. More precisely, we prove that for $q=d/(d-\beta)$ the map $f \mapsto |\nabla M_\beta f|$ is continuous from $W^{1,1}(\mathbb{R}^d)$ to $L^{q}(\mathbb{R}^d)$ for $ 0 < \beta < 1$ if $f$ is radial and for $1 \leq \beta < d$ for general $f$. The results for $1\leq \beta < d$ extend to the centered counterpart $M_\beta^c$. Moreover, if $d=1$, we show that the conjectured boundedness of that map for $M_\beta^c$ implies its continuity. | en_US |
dc.format | application/pdf | en_US |
dc.language.iso | eng | en_US |
dc.rights | Reconocimiento-NoComercial-CompartirIgual 3.0 España | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/es/ | en_US |
dc.subject | Maximal function | en_US |
dc.subject | Sobolev spaces | en_US |
dc.subject | Continuity | en_US |
dc.title | Endpoint Sobolev continuity of the fractional maximal function in higher dimensions | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/669689 | en_US |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2017-0718 | en_US |
dc.relation.projectID | info:eu-repo/grantAgreement/Gobierno Vasco/BERC/BERC.2018-2021 | en_US |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | en_US |
dc.type.hasVersion | info:eu-repo/semantics/submittedVersion | en_US |