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Abstract. We extend the estimates for maximal Fourier restriction operators
proved by Müller, Ricci, and Wright in [18] and Ramos in [22] to the case of
arbitrary convex curves in the plane, with constants uniform in the curve.
The improvement over Müller, Ricci, and Wright and Ramos is given by the
removal of the C2 regularity condition on the curve. This requires the choice of
an appropriate measure for each curve, that is suggested by an affine invariant
construction of Oberlin in [21]. As corollaries, we obtain a uniform Fourier
restriction theorem for arbitrary convex curves and a result on the Lebesgue
points of the Fourier transform on the curve.
1. Introduction
The study of the restriction phenomena for the Fourier transform in Rn has
been an active research topic in harmonic analysis over the last decades. The most
common instance of it, a Fourier restriction estimate, comes in the form of the
following inequality for every Schwartz function f P SpRnq
‖ pf|S‖LqpS,νq ď Cpp, q, S, νq‖f‖LppRnq,
where pf is the Fourier transform of f , S a hypersurface with appropriate curvature
properties, ν a suitable measure on S, the exponents p and q vary in an appropriate
range, and the constant Cpp, q, S, νq is independent of f . The a priori estimate in
the previous display guarantees the existence of a bounded restriction operator
R : LppRnq Ñ LqpS, νq such that Rf “ pf on S when f P SpRnq. Such Fourier
restriction estimates were first studied by Fefferman and Stein who proved a result
in any dimension ([11], pg. 28). This result was later improved by the celebrated
Stein-Tomas method ([26], [31]) which focuses on the case q “ 2. Since then, a huge
mathematical effort has been put into studying the Fourier restriction phenomena
leading to the development of many new techniques. Despite that, many problems
for any arbitrary dimension n ě 3 are still open. For example, the question about
sufficient conditions on the exponents p and q in order for a Fourier restriction
estimate to hold true.
In fact, standard examples (constant functions, Knapp examples) in the case of
the sphere S “ Sn´1 with the induced Borel measure σ provide necessary conditions
on the range of exponents p and q in order for the inequality in the previous display
to hold true, namely
1 ď p ă 2n
n` 1 , q ď
n´ 1
n` 1p
1,
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where 1p ` 1p1 “ 1. The main conjecture in the theory of Fourier restriction is
that these conditions are sufficient too. We refer to the exposition of Tao in [30]
for a description of the aforementioned standard examples. We point to the same
reference also for a more exhaustive introduction to the research topic of Fourier
restriction, as well as an overview of the results up to 2004.
In the case of a C2 convex curve Γ in the plane R2 the conditions on the exponents
are also sufficient. Sharp estimates were proved first for the circle S1 by Zygmund
in [33], and for more general curves by Carleson and Sjölin in [5] and Sjölin in [25].
In fact, in [25] Sjölin proved a uniform Fourier restriction result for such curves
upon the choice of a specific measure ν “ νpΓq on each curve. This is the so called
affine arclength measure, encompassing the curvature properties of the Γ. In the
case of the circle, it coincides with the induced Borel measure σ, thus proving the
sharpness of the result of Sjölin.
In [18] Müller, Ricci, and Wright addressed a different feature of the Fourier
restriction phenomena, namely the pointwise relation between Rf and pf for an
arbitrary function f P LppRnq. In the case of a C2 convex curve and a function
f P LppR2q, with 1 ď p ă 8{7 they proved that ν-almost every point of the curve
is a Lebesgue point for pf . Moreover, they showed that the regularized value of pf
coincides with that of Rf at ν-almost every point of the curve. The main ingredient
in their proof is given by the estimates for a certain maximal Fourier restriction
operator M defined as follows. For every Schwartz function f P SpR2q we define
(1.1) M pfpxq :“ sup
R
∣∣∣ż
R2
pfpx´ yqχRpyqdy∣∣∣,
where χR is a bump function adapted to R normalized in L1pR2q and the supremum
is taken over all rectangles R centred at the origin with sides parallel to the axes.
Next, they use the estimate
M pf ď pMphq 12 ,
where M is the classical two-parameter maximal operator and h is defined byph “ | pf |2. To obtain the desired result about the Lebesgue points for f P LppR2q,
they need to bound the norms of h by those of f . This forces to assume the
additional condition p ă 8{7 on the exponent.
In [22] Ramos extended their result to the full range 1 ď p ă 4{3 in the case of
the circle S1. The improvement relies on the estimates he proved for a more general
class of maximal Fourier restriction operators
tMg : ‖g‖L8pR2q “ 1u,
where for every function g normalized in L8pR2q we define Mg as follows. For
every Schwartz function f P SpR2q we define
(1.2) Mg pfpxq :“ sup
R
∣∣∣ż
R2
pfpx´ yqgpx´ yq|R|´11Rpyqdy∣∣∣,
where the supremum is taken over all rectangles R centred at the origin with sides
parallel to the axes. In particular, the freedom in the choice of g allows Ramos to
bring the absolute value inside the integral defining the averages, thus bypassing
the artificial limitation arising in Müller, Ricci, and Wright argument.
The line of investigation about the boundedness properties of maximal Fourier
restriction operators initiated by Müller, Ricci, and Wright has been developed
further in a series of papers that followed up. In [32] Vitturi studied estimates for
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a maximal Fourier restriction operator in the case of the sphere Sn´1 in Rn for any
arbitrary dimension n ě 3. The operator considered is of the form described in
(1.1) with the supremum taken over averages on balls. Vitturi used the estimates
on this operator to prove the analogue of the Lebesgue points property of pf for
every function f P LppR2q with 1 ď p ď 8{7. The range of exponents was later
improved by Ramos in [22] to 1 ď p ď 4{3 considering maximal Fourier restriction
operators of the form described in (1.2) with the supremum taken over averages on
balls. It is worth noting that in the case of dimension n ě 3, due to the range of
Stein-Tomas estimates, the endpoint p “ 4{3 is recovered, as opposed to the case
of dimension n “ 2.
In parallel, in [16] Kovač studied estimates for certain variational Fourier restric-
tion operators in any arbitrary dimension n ě 2. These operators are defined by
variation norms, rather than the L8 norm, on averages of the form of those ap-
pearing on the right hand side in (1.1) computed with respect to isotropic rescaling
of an arbitrary measure µ. He developed an abstract method to upgrade Fourier
restriction estimates with p ă q to estimates for the variational Fourier restriction
operators with the same exponents. As a consequence, he obtained a quantita-
tive version of the qualitative result about the convergence of averages in Lebesgue
points. Kovač provided sufficient conditions for the method to work. These con-
ditions are expressed in terms of certain decay estimates on the gradient of pµ.
Together with Oliveira e Silva, he later improved over the sufficient conditions in
[17].
Next, in [23] Ramos studied estimates for certain maximal Fourier restriction
operators associated with an arbitrary measure µ in the case of dimension n “ 2
and n “ 3. Once again, he considered operators of the form described in (1.2) with
the supremum taken over averages computed with respect to isotropic rescaling of µ.
Ramos provided sufficient conditions on the measure µ to obtain estimates for the
maximal Fourier restriction operators. These conditions are expressed in terms of
the boundedness properties close to L2pRnq of the maximal function associated with
µ. In particular, he recovered the case of the spherical measures that, in dimension
n “ 2 and n “ 3, do not satisfy the sufficient conditions stated in [16, 17]. Since
Kovač and Oliveira e Silva use stronger norms but weaker averages than Ramos,
the results in [16, 17] and those in [22, 23] are not comparable, and we refer to
those papers for an exposition of the connections between their results.
Finally, in [15] Jesurum studied estimates for a maximal Fourier restriction op-
erator in the case of the moment curve tpt, 12 t2, . . . , 1n tnq : t P Ru in Rn for any
arbitrary dimension n ě 3. The operator considered is of the form described in
(1.2) with the supremum taken over averages on balls. Jesurum followed the ar-
gument of Drury in [10], where Drury proved Fourier restriction estimates for the
moment curve in the full range 1 ď p ă pn2 ` n ` 2q{pn2 ` nq, q “ 2p1{pn2 ` nq.
In particular, Jesurum recovered the analogue of the Lebesgue points property ofpf for every function f P LppRnq with p in the same range of exponents.
In fact, both Ramos in [23] and Jesurum in [15] considered also stronger maximal
Fourier restriction operators. In particular, in the definition of these operators
they substituted the supremum taken over L1 averages on balls with that over Lr
averages for arbitrary r ě 1. By Hölder’s inequality, the operators are increasing
in r. We refer to those papers for details about the estimates for these maximal
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Fourier restriction operators, as well as the analysis of the threshold values for r ě 1
in relation to such estimates.
In this paper, we are concerned with extending the results of Müller, Ricci, and
Wright in [18] and Ramos in [22] to the case of arbitrary convex curves in the plane,
uniformly in the curve. Such curves are the boundaries of non-empty open convex
sets in R2. Passing from the case of the circle S1 to the case of an arbitrary C2
convex curve Γ is straight-forward upon the choice of the affine arclength measure
on Γ. We are going to introduce such measure in a moment. The main point
of the paper is the removal of the C2 regularity condition on the curve. It goes
through the choice of a suitable extension of the affine arclength measure, which
was suggested by an affine invariant construction described by Oberlin in [21]. The
desired extension of the results then follows the line of proof by Ramos up to the
appropriate modifications.
We turn now to the description of two measures on an arbitrary convex curve
Γ in the plane. We elaborate in more detail in Section 2 and Appendix A. A first
measure ν is built from the arclength parametrization such a curve always admits
z : J Ñ Γ Ď R2,
where J is an interval in R, possibly degenerate. Let m be the Lebesgue measure
on J . The first and second derivatives z1 and z2 with respect to m are functions
well-defined pointwise m-almost everywhere on J . We define a measure ν on J by
dνptq “ 3
b
det
`
zptq z2ptq˘ dt.
With a slight abuse of notation we denote by ν also its push-forward to Γ via the
affine arclength parametrization z. In particular, when Γ is C2 the argument of the
cubic root is well-defined everywhere in J and the measure ν on Γ is called affine
arclength measure. We extend the term to denote ν in the general case of arbitrary
convex curves.
We define a second measure µ on Γ following Oberlin. Oberlin’s construction of
the affine measures tµn,α : α ě 0u on Rn is analogous to that of the Hausdorff mea-
sures. The only difference is that in the former we use rectangular parallelepipeds
in Rn to cover sets while in the latter we use balls. This change guarantees the
affine invariance of µn,α, as well as it allows µn,α to be sensitive to the curvature
properties of the set on which µn,α is evaluated. A general definition of µn,α can be
found in [21]. Here, we restrict ourselves to the case n “ 2, α “ 2{3 and we drop
the subscripts from the notation of µ.
Definition 1.1 (Affine measure µ on R2). For every δ ą 0 and every subset E Ď R2
we define
µδpEq :“ inf
! ÿ
RPR1
|R| 13 : R1 Ď Rδ, E Ď
ď
RPR1
R
)
,
where |R| is the Lebesgue measure of the rectangle R and Rδ is the collection of all
rectangles in R2 with diameter smaller than or equal to δ. Next, we define
µ˚pEq :“ lim
δÑ0µ
δpEq.
Finally, we define the affine measure µ on R2 to be the restriction of the outer
measure µ˚ on R2 to its Carathéodory measurable subsets of R2.
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With a slight abuse of notation we denote by µ also its restriction to the convex
curve Γ, as well as its push-forward to J via the inverse of the bijective function
given by an arclength parametrization z for Γ.
In [21] Oberlin proved that if the curve Γ is C2, then the affine measure µ and the
affine arclength measure ν are comparable up to multiplicative constants uniform
in the curve. The first observation of this paper is the extension of this property
to the case of arbitrary convex curves.
Theorem 1.2. There exist constants 0 ă A ď B ă 8 such that for every convex
curve Γ we have
Aν ď µ ď Bν,
where µ, ν are the measures on Γ defined above.
The second observation of this paper is the uniform extension of the boundedness
properties of the maximal Fourier restriction operator defined in (1.2) to the case
of arbitrary convex curves.
Theorem 1.3. Let 1 ď p ă 4{3, q “ p1{3. There exists a constant C “ Cppq ă 8
such that for every function g P L8pR2q normalized in L8pR2q, every convex curve
Γ, and every Schwartz function f P SpR2q we have
‖Mg pf‖LqpΓ,νq ď C‖f‖LppR2q,
where ν is the measure on Γ defined above.
We have two straight-forward corollaries. The first is a uniform Fourier restric-
tion result for arbitrary convex curves.
Corollary 1.4. Let 1 ď p ă 4{3, q “ p1{3. There exists a constant C “ Cppq ă 8
such that for every convex curve Γ and every Schwartz function f P SpR2q we have
‖ pf‖LqpΓ,νq ď C‖f‖LppR2q,
where ν is the measure on Γ defined above.
The second is the extension of the result on Lebesgue points of pf on the curve
to the case of arbitrary convex curves.
Corollary 1.5. Let 1 ď p ă 4{3. Let Γ be a convex curve and ν the measure on Γ
defined above. If f P LppR2q, then ν-almost every point of Γ is a Lebesgue point forpf . Moreover, the regularized value of pf coincides with the one of Rf at ν-almost
every point of Γ.
The results stated in Theorem 1.3 and the corollaries highlight a strict relation
between the following objects. On one hand, the affine arclength and Oberlin’s
affine measures, sensitive to the curvature properties of the sets on which they are
defined. On the other hand, uniform estimates for classical operators involving
smooth enough submanifolds in Rn, where the curvature properties of the subman-
ifold play a significant role. Beyond Fourier restriction operators, it is the case
of convolution operators, X-ray transforms, and Radon transforms. We conclude
the Introduction briefly mentioning previous works pointing at the aforementioned
relation in the analysis of all these operators [1, 2, 3, 4, 6, 7, 8, 9, 14, 19, 20, 28, 29].
We refer to these papers and the references therein for a more thorough exposition
of the relation. Finally, we point out the work of Gressman in [12] on the gen-
eralization of the affine arclength measure to smooth enough submanifolds of any
arbitrary dimension d in Rn.
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Guide to the paper. In Section 2 we introduce some notations, definitions, and
previous results we clarify in Appendix A. In Section 3 we prove Theorem 1.2. In
Section 4 we prove Theorem 1.3 and the corollaries.
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2. Preliminaries
2.1. Notation. We introduce the following notations.
For every interval I Ď R we denote by ∆pIq the lower triangle associated with I
defined by
∆pIq :“ tps, tq P I ˆ I : t ă su.
For all vectors a, b P R2ztp0, 0qu we denote by θpa, bq P r0, 2piq the counterclock-
wise angle from a to b.
2.2. Real analysis. We recall a result about the metric density associated with
the absolutely continuous part of a measure with respect to the Lebesgue measure.
Definition 2.1. Let x P Rn. We say that a sequence tEε : ε ą 0u shrinks to
x nicely if it is a sequence of Borel sets in Rn and there is a number α ą 0
satisfying the following property. There is a sequence of balls tBpx, rεq : ε ą 0u
with limεÑ0 rε “ 0, such that for every ε ą 0 we have Eε Ď Bpx, rεq and
mpEεpxqq ě αmpBpx, rεqq.
Theorem 2.2 (Rudin [24], Theorem 7.14). For every x P Rn let tEεpxq : ε ą 0u be
a sequence that shrinks to x nicely. Let µ be a Borel measure on Rn. Let
dµ “ µ1 dm` dµs,
be the decomposition of µ into the absolutely continuous and singular parts with
respect to the Lebesgue measure m in Rn. Then, for m-almost every x P Rn we
have
lim
εÑ0
µpEεpxqq
mpEεpxqq “ µ
1pxq.
2.3. Convex curves. We introduce some auxiliary notations and definitions, and
we recall some observations and properties for convex curves in the plane. They
guarantee a formalization of the definition of the affine arclength measure ν we gave
in the Introduction. These properties are standard, but we were not able to find
any clear reference for them. Therefore, for the sake of completeness we include
the required proofs in Appendix A.
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Definition 2.3. A set K Ď Rn is convex if for all x, y P K, 0 ď λ ď 1 we have
λx` p1´ λqy P K.
A convex curve Γ Ď R2 is the boundary BK of a non-empty open convex set K Ď R2.
From now on, we restrict ourselves to compact convex curves. We extend the def-
initions and results to every non-compact convex curve Γ considering the sequence
of compact convex curves
tΓN :“ BpK X r´N,N s2q : N P Nu.
Theorem 2.4. Every compact convex curve Γ is rectifiable.
Therefore, a compact convex curve Γ admits an arclength parametrization
z : J “ r0, `pΓqq Ñ Γ Ď R2,
where `pΓq is the length of the curve Γ. Without loss of generality, we assume
the parametrization to be counterclockwise. Moreover, we have an almost identical
arclength parametrization defined by
rz : rJ “ p0, `pΓqs Ñ Γ Ď R2,rzp`pΓqq :“ zp0q, @t P p0, `pΓqq, rzptq :“ zptq.
With a slight abuse of notation, we denote both of the arclength parametrizations
by z. The identification is harmless and involves a single point. At any time it will
be made clear by the context which one is the appropriate choice of the arclength
parametrization we are considering. A first instance of the feature just described
appears in the following statement about the existence of well-defined left and right
derivatives of the function z. Strictly speaking, we should define the left derivativerz1l of rz on rJ , and the right derivative z1r of z on J .
Theorem 2.5. The left and right derivatives z1l and z1r of z with respect to the
Lebesgue measure m on J are well-defined functions from J to S1, and they coincide
m-almost everywhere.
In fact, the functions z1l and z1r admit well-defined derivatives m-almost every-
where.
Theorem 2.6. The derivatives z2l and z2r of z1l and z1r with respect to the Lebesgue
measure m on J are well-defined m-almost everywhere. They are functions from J
to R2 and coincide m-almost everywhere.
Next, we define the Borel measure σ on J as follows. For all a, b P J , a ď b we
define
(2.1)
σppa, bqq :“ maxt0, θpz1rpaq, z1lpbqqu, σppa, bsq :“ θpz1rpaq, z1rpbqq,
σpra, bqq :“ θpz1lpaq, z1lpbqq, σpra, bsq :“ θpz1lpaq, z1rpbqq.
We denote by κ the metric density associated with the absolutely continuous part
of σ with respect to the Lebesgue measure m on J .
Theorem 2.7. The measure σ is positive. The function κ coincides m-almost
everywhere with the functions det
`
z1l z2l
˘
and det
`
z1r z2r
˘
.
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Finally, we define the affine arclength measure ν on J by
dνptq “ 3aκptqdt.
With a slight abuse of notation, we denote by ν also its push-forward to Γ via the
affine arclength parametrization z.
3. Proof of Theorem 1.2
We begin by stating and proving an auxiliary lemma about the qualitative rela-
tion between the affine measure µ and the Lebesgue measure m on J .
Lemma 3.1. The measure µ is absolutely continuous with respect to the Lebesgue
measure m on J , namely for every subset E Ď J we have
mpEq “ 0 ñ µpEq “ 0.
In its proof, we need the following auxiliary definition.
Definition 3.2. Let I Ď J be an interval. Let c and d be in the closure J¯ of J
such that I¯ “ rc, ds. Assume that σppc, dqq ď pi{2. We define the rectangle RpIq
over I to be the minimal rectangle containing zpIq as follows.
If z1 is constant on the interior of I, then zpIq is a segment. The affine measure
µ of zpIq is zero, as zpIq can be covered by arbitrarily thin rectangles. We define
RpIq to be the segment zpIq itself.
If z1 is not constant on the interior of I, then we define RpIq to be the rec-
tangle with two adjacent vertices in zpcq and zpdq, and minimal width hpRpIqq,
see Figure 1. The condition on z1 guarantees that hpRpIqq ą 0. Moreover, let
bpRpIqq “ |zpdq ´ zpcq|. Furthermore, let the point zpeq be in the intersection be-
tween zpIq and the side of the rectangle opposite to that connecting zpcq to zpdq.
Finally, let φ and ψ be the angles defined by
φ :“ θpzpeq ´ zpcq, zpdq ´ zpcqq, ψ :“ θpzpcq ´ zpdq, zpeq ´ zpdqq.
RpIq
zpJq
zpcq
zpeq
zpdq
φ
ψ
hpRpIqq
bpRpIqq
Figure 1. The rectangle RpIq over the interval I.
Proof of Lemma 3.1. Let E Ď J be such that mpEq “ 0. We want to show that
for every ρ ą 0 there exists a covering of zpEq by a collection of rectangles with
bounded diameter such that the sum of their areas is bounded by ρ.
By assumption, E has 1-dimensional Hausdorff measure zero. Therefore, for
every ε ą 0 there exists a covering of E by disjoint intervals tIn “ rcn, dnq : n P Nu
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of bounded lengths `n “ mpInq “ |dn ´ cn| such that
(3.1)
ÿ
nPN
`n ď ε.
Without loss of generality, up to splitting every interval into four subintervals, we
can assume σpInq ď pi{2.
The set zpEq can be covered by the family tRn : n P Nu of rectangles, where for
every n P N we define Rn “ RpInq to be the rectangle over the interval In as in
Definition 3.2. The diameter of Rn is bounded from above by
|zpeq ´ zpcq|` |zpdq ´ zpeq|.
By the definition of the length of a curve, see Definition A.6 in the Appendix, the
sum in the previous display is bounded from above by `pzpInqq. Finally, since z
is an arclength parametrization, we have that `pzpInqq “ `n. Therefore, for every
n P N the diameter of Rn is bounded from above.
Moreover, we claim that for every n P N we have
(3.2)
hn
`n
ď σpInq,
where hn “ hpRnq. In fact, for en, φn, and ψn as in Definition 3.2 and Figure 1 we
have
hn
`n
ď hn|cn ´ en| `
hn
|dn ´ en| ď
ď hn|zpcnq ´ zpenq| `
hn
|zpdnq ´ zpenq| “ sinφn ` sinψn ď φn ` ψn ď σpInq.
Therefore, we haveÿ
nPN
|Rn| 13 “
ÿ
nPN
pbnhnq 13 ď
ÿ
nPN
`
2
3
n
´hn
`n
¯ 1
3
ď
ÿ
nPN
`
2
3
nσpInq 13
ď
´ ÿ
nPN
`n
¯ 2
3
´ ÿ
nPN
σpInq
¯ 1
3
ď ε 23 p2piq 13 ,
where we used the definition of the length of a curve to dominate bn “ bpRnq by
`n in the first inequality, the inequality in (3.2) in the second, Hölder’s inequality
with the couple of exponents p3{2, 3q in the third, and the inequality in (3.1), the
disjointness of In, and the definition of σ in the fourth.
By taking ε arbitrarily small, we obtain the desired result. �
Next, we prove the quantitative relation between the affine measure µ and the
affine arclength measure ν stated in Theorem 1.2.
Proof of Theorem 1.2. Without loss of generality, up to splitting J into eight dis-
joint subintervals, we can assume σpJq ď pi{4. It is enough to prove the desired
comparability for every subset E Ď J .
Part I: Aν ď µ. Let R be a closed rectangle such that
RX zpJq “ zprc, dsq,
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where rc, ds Ď J . Let Φ: ∆prc, dsq Ñ R`R be the function defined by
Φps, tq “ zpsq ` zptq.
The determinant of its Jacobian is defined m-almost everywhere, and it is
det
`
z1ptq z1psq˘ .
Since the area of the subset R`R is 4|R|, we have
(3.3)
4|R| ě
ż
∆prc,dsq
det
`
z1ptq z1psq˘dsdt
“
ż
∆prc,dsq
´ ż
rt,ss
det
`
z1ptq dz1˘ ¯dsdt
ě
ż
∆prc,dsq
ż s
t
det
`
z1ptq z2puq˘dudsdt,
where dz1 is the distributional derivative of z1, and z2 is a function coinciding
m-almost everywhere with z2l and z2r .
For m-almost all t, u P J , t ď u we have
(3.4)
det
`
z1ptq z2puq˘ “ |z2puq| sinpθpz1ptq, z1puqq ` θpz1puq, z2puqqq
“ |z2puq| cospθpz1ptq, z1puqqq
ě 1
2
|z2puq| sinpθpz1puq, z2puqqq
“ 1
2
det
`
z1puq z2puq˘ ,
where in the second and in the third equality, as well as in the inequality we used
θpz1puq, z2puqq “ pi
2
,
and in the inequality we also used
0 ď θpz1ptq, z1puqq ď σpJq ď pi
4
.
Therefore, there exists a constant C ă 8 such that we have
νprc, dsq “
ż d
c
3
a
κpuqdu
“
ż d
c
ppd´ uqpu´ cqq´ 13 ppd´ uqpu´ cqq 13 3aκpuqdu
ď
´ ż d
c
ppd´ uqpu´ cqq´ 12 du
¯ 2
3
´ ż d
c
pd´ uqpu´ cqκpuqdu
¯ 1
3
ď C
´ ż d
c
ż u
c
ż d
u
κpuqdsdtdu
¯ 1
3
ď C
´ ż
∆prc,dsq
ż t
s
κpuqdudsdt
¯ 1
3
ď 2C|R| 13 ,
where we used the definition of ν in the first equality, Hölder’s inequality with the
couple of exponents p3{2, 3q in the first inequality, we evaluated the first factor,
which is independent of c and d, in the third equality, we used Fubini in the second
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inequality, and we used Theorem 2.7 and the chains of inequalities in (3.4) and
(3.3) in the third inequality.
Now, let tRn : n P Nu be a set of rectangles covering zpEq and define En Ď E by
zpEnq “ zpEq XRn.
Then tEn : n P Nu is a covering of E, and we haveÿ
nPN
|Rn| 13 ě 2C
ÿ
nPN
νpEnq ě 2CνpEq.
By taking the lim inf over all the possible coverings, we obtain the desired inequality.
Part II: µ ď Bν. By Lemma 3.1, there exists a function µ1 : J Ñ r0,8q defined
m-almost everywhere such that for every measurable subset E Ď J we have
µpEq “
ż
E
µ1ptqdt.
By Theorem 2.2, for m-almost every t P J we have
µ1ptq “ lim
εÑ0
µprs, s` εsq
ε
, where t P rs, s` εs.
As in the proof of Lemma 3.1, the limit is bounded from above by
lim
εÑ0
ε
2
3 pσprs, s` εsqq 13
ε
“
´
lim
εÑ0
σprs, s` εsq
ε
¯ 1
3
.
By Theorem 2.2 and Theorem 2.7, we obtain the desired inequality. �
4. Proofs of Theorem 1.3 and the corollaries
We begin with an auxiliary definition.
Definition 4.1. A measurable function a in Rn is a bump function if there exists
a rectangular parallelepiped R centred at the origin with sides parallel to the axes
such that
‖a‖L8pRnq ď |R|´11R.
We denote by An the collection of bump functions on Rn.
The convolution with such bump functions is pointwise bounded by the strong
Hardy-Littlewood maximal function, uniformly in the rectangle.
Next, we state and prove an auxiliary lemma about the boundedness properties
of the adjoint operator of a certain linearised maximal Fourier restriction operator.
Lemma 4.2. Let 1 ď r ă 2. There exists a constant C “ Cprq ă 8 such that the
following property holds true.
For every convex curve Γ parametrized by arclength z : J Ñ Γ Ď R2 and every
collection tazptq : t P Ju Ď A2 of bump functions such that, as a function in pt, xq,
azptqpxq P L8pdνptq;L1pdxqq,
let S “ SpΓ, tauq be the operator defined as follows. For every function f P L4pJ, νq
we define
Sfpξq “
ż
J
pazptqpξqe2piiξ¨zptqfptqdνptq.
Then, we have
‖Sf‖L2r1 pR2q ď C‖f‖L 2r3´r pJ,νq.
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Its proof relies on a lemma about the boundedness properties of an adjoint
operator of a linearised maximal operator combined with a Fourier transform proved
by Ramos.
Lemma 4.3 (Ramos [22], Lemma 1). Let n, k ě 1. There exists a constant C “
Cpn, kq ă 8 such that the following property holds true.
For every collection !
bx : pbx “ kź
i“1
pbx,i, bx,i P An, x P Rn),
of convolution products of k bump functions such that, as function in px, yq,
bxpyq P L8pdx;L1pdyqq,
let T “ T ptbxuq be the operator defined as follows. For every function f P L2pRnqX
L1pRnq we define
Tfpξq “
ż
Rd
pbxpξqe2piix¨ξfpxqdx.
Then, we have
‖Tf‖L2pRnq ď C‖f‖L2pRnq.
Proof of Lemma 4.2. Without loss of generality, by the definition of ν, we restrict
our attention to I Ď J where z1l and z1r coincide, and κptq is well-defined and strictly
positive.
Following the idea of Carleson-Sjölin in [5] and Sjölin in [25], we rewrite the
square of Sf via a two-dimensional integral
Sfpξq2 “
ż
IˆI
pazptqpξqpazpsqpξqe2piξ¨pzptq`zpsqqfptqfpsqdνptqdνpsq
“ 2
ż
∆pIq
pazptqpξqpazpsqpξqe2piξ¨pzptq`zpsqqfptqfpsqdνptqdνpsq.
We change variables via the bijective function Φ: ∆pIq Ñ Ω Ď R2 defined by
Φps, tq “ zpsq ` zptq,
and for ps, tq P ∆pIq we definepbzpsq`zptq :“ pazpsqpazptq,
F pzpsq ` zptqq :“ fpsqfptq|det `z1psq z1ptq˘|´1 3aκptq 3aκpsq.
By the definition of ν and Φ, we obtain
Sfpξq2 “ 2
ż
Ω
pbxpξqe2piiξ¨xF pxqdx.
Next, we prove by interpolation that for every 1 ď r ď 2 there exists a constant
C “ Cprq ă 8 such that we have
‖Sf‖2r
L2r1 pR2q “ ‖Sf2‖rLr1 pR2q ď C‖F‖rLrpR2q.
The case r “ 1 follows from ‖pbx‖L8pR2q ď C. The case r “ 2 follows from
Lemma 4.3.
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After that, to estimate the LrpR2q norm of F for 1 ď r ă 2, we invert the change
of variables Φ,
(4.1)
ż
Ω
|F pxq|rdx “
ż
∆pIq
|fptqfpsq|rκptq r3 κpsq r3 |det `z1ptq z1psq˘|1´r dtds
“
ż
∆pIq
|fptqfpsq|rκptq r3 κpsq r3 |sinpθptq ´ θpsqq|1´r dtds,
where we define θ : I Ñ r0, 2piq by requiringˆ
cos θptq
sin θptq
˙
“ z1ptq.
We split ∆pIq in the four subsets defined as follows. For j P t1, 2, 3, 4u we define
∆j :“
!
ps, tq P ∆pIq : θpsq ´ θptq P
” pj ´ 1qpi
2
,
jpi
2
¯)
,
and we observe that
for ps, tq P ∆1, sinpθpsq ´ θptqq ě 1
2
pθpsq ´ θptqq ě 0,
for ps, tq P ∆2, sinpθpsq ´ θptqq ě 1
2
ppi ` θptq ´ θpsqq ě 0,
for ps, tq P ∆3, sinpθptq ´ θpsqq ě 1
2
pθpsq ´ θptq ´ piq ě 0,
for ps, tq P ∆4, sinpθptq ´ θpsqq ě 1
2
p2pi ` θptq ´ θpsqq ě 0.
We obtain the desired estimate by controlling the portions of the integral in (4.1)
in the corresponding subsets separately.
Case I: ps, tq P ∆1. We have
(4.2) θpsq ´ θptq ě
ż s
t
κpuqdu ě 0.
By the assumption on I made at the beginning of the proof, the function Ψ1 : ∆1 Ñr∆1 Ď r0, 2piq2 defined by
(4.3)
Ψ1ps, tq “ pαpsq, βptqq,
αpsq “
ż s
0
κpuqdu, βptq “
ż t
0
κpuqdu,
is bijective. Together with the change of variables via the function Ψ1, the inequality
in (4.2) yields that the portion of the integral in (4.1) on ∆1 is bounded from above
by ż
r∆1 |fpspαqq|
r|fptpβqq|rκpspαqq r3´1κptpβqq r3´1|α´ β|1´r dα dβ.
By Hardy-Littlewood-Sobolev inequality, up to a multiplicative constant, the pre-
vious display is bounded from above by
‖|f ˝ s|rpκ ˝ sq r3´1‖2
L
2
3´r prI,rνq,
where rI “ αpIq and rν is the push-forward to rI via α of the measure ν on I. We
change variables via the inverse of the bijective function α defined in (4.3). Up
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to a multiplicative constant, we obtain the desired estimate for the portion of the
integral in (4.1) on ∆1 by
‖f‖2r
L
2r
3´r pI,νq
.
Case II: ps, tq P ∆2. For S2ptq defined by
S2ptq :“ sup
!
u P J : θpuq ď θptq ` pi
)
ě s,
we have
(4.4) pi ` θptq ´ θpsq ě
ż S2ptq
s
κpuqdu ě 0.
By the assumption on I made at the beginning of the proof, the function Ψ2 : ∆2 Ñr∆2 Ď r0, 2piq2 defined by
(4.5)
Ψ2ps, tq “ pαps, tq, βptqq,
αps, tq “
ż S2ptq
s
κpuqdu`
ż t
0
κpuqdu` pi, βptq “
ż t
0
κpuqdu,
is bijective. Since the function S2 is increasing then it is differentiable almost ev-
erywhere. Therefore, the function Ψ2 is approximately totally differentiable almost
everywhere in its domain, see Theorem 1 and the following Example in [13]. To-
gether with the change of variables via the function Ψ2, the inequality in (4.4) yields
that the portion of the integral in (4.1) on ∆2 is bounded from above byż
r∆2 |fpspαqq|
r|fptpβqq|rκpspαqq r3´1κptpβqq r3´1|α´ β ´ pi|1´r dα dβ,
where we used the result stated in Theorem 2 in [13] for changes of variables that
are approximately totally differentiable almost everywhere.
As in Case I, we conclude by Hardy-Littlewood-Sobolev inequality and the
change of variables via the inverse of the bijective function defined in (4.5).
Case III: ps, tq P ∆3. For S3ptq defined by
S3ptq :“ inf
!
u P J : θpuq ě θptq ` pi
)
ď s,
we have
θpsq ´ θptq ´ pi ě
ż s
S3ptq
κpuqdu ě 0.
We conclude as in Case II, with the change of variables via the bijective function
Ψ3 : ∆3 Ñ r∆3 Ď r0, 2piq2 defined by
Ψ3ps, tq “ pαps, tq, βptqq,
αps, tq “
ż s
S3ptq
κpuqdu`
ż t
0
κpuqdu` pi, βptq “
ż t
0
κpuqdu.
Case IV: ps, tq P ∆4. We have
2pi ` θptq ´ θpsq ě
ż `pΓq
s
κpuqdu`
ż t
0
κpuqdu ě 0.
UNIFORM FOURIER RESTRICTION FOR CONVEX CURVES 15
We conclude as in Case I, with the change of variables via the bijective function
Ψ4 : ∆4 Ñ r∆4 Ď r0, 2piq2 defined by
Ψ4ps, tq “ pαpsq, βptqq,
αpsq “ 2pi ´
ż `pΓq
s
κpuqdu, βptq “
ż t
0
κpuqdu.
�
Next, we prove the boundedness of the maximal Fourier restriction operator
uniformly in the convex curve stated in Theorem 1.3.
Proof of Theorem 1.3. The proof follows a standard argument that we repeat for
the sake of completeness. Let g P L8pR2q be a function normalized in L8pR2q.
Let R be a measurable function associating a point in Γ to a rectangle centred
at the origin with sides parallel to the axes. We consider the linearised maximal
Fourier restriction operator Mg,R defined as follows. For every Schwartz function
f P SpR2q we define
Mg,R pfptq “ ż
R2
pfpzptq ´ yqgpzptq ´ yq|Rpzptqq|´11Rpzptqqpyqdy.
We aim at proving boundedness properties for Mg,R with constants independent
of the linearising function R.
The operator is bounded from L1pR2q to L8pJ, νq. To prove its boundedness
properties near L4{3pR2q, we introduce the bump function
axpyq :“ |Rpxq|´11Rpxqpyqgpx´ yq,
and, by Plancherel, we rewrite
Mg,R pfptq “ ż
R2
pazptqpξqe2piiξ¨zptqfpξqdξ.
The adjoint operator Mg˚,R with respect to the L1pJ, νq-pairing is defined by
Mg˚,Rhpξq “
ż
J
pazptqpξqe´2piiξ¨zptqhptqdνptq.
By Lemma 4.2, for 1 ď r ă 2 we have
Mg˚,R : L
2r
3´r pJ, νq Ñ L2r1pR2q, ‖Mg˚,R‖op ă 8,
hence, for 1 ď p ă 4{3 we have the desired result
Mg,R : LppR2q Ñ L p
1
3 pJ, νq, ‖Mg,R‖op ă 8,
where ‖¨‖op stands for the norm of the operator and p1 “ 2r1. �
Finally, we prove the corollaries.
Proof of Corollary 1.4. For every function f P SpR2q we define the function g by
gpξq “
$’&’%
| pfpξq|pfpξq , if pfpξq ‰ 0,
1, if pfpξq “ 0.
In particular, we have
‖g‖8 “ 1, pfg “ | pf |.
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Therefore, the function Mg pf dominates the function | pf |, and the desired result
follows from Theorem 1.3. �
Proof of Corollary 1.5. The desired result holds true for every function f P SpR2q.
For 1 ď p ă 4{3, the desired result for every function f P LppR2q follows from a
standard approximation argument and the boundedness properties of the maximal
operator stated in Theorem 1.3. �
Appendix A. Compact convex curves
A.1. Proof of Theorem 2.4. First, for every compact convex curve Γ we define
a continuous parametrization γ in Lemma A.5. We achieve this formalizing the
following intuition. Let x0 be a point in the bounded open convex set K Ď R2,
whose boundary BK is Γ. We parametrize Γ by S1 via the unique intersection
between Γ and each positive half-line emanating from x0. Moreover, we choose to
parametrize S1 by r0, 2piq counterclockwise, hence Γ too.
S1
x0
τpeq
Γ “ BK
e
Figure 2. The intuitive parametrization of Γ “ BK.
After that, we prove the rectifiability of every compact convex curve Γ “ BK
claimed in Theorem 2.4. The main ingredient in the proof is the inequality between
the perimeters of convex polygons A and B such that A Ď B stated in Lemma A.11.
We begin with the definition of the continuous parametrization γ for every com-
pact convex curve Γ “ BK outlined above. We first state and prove three auxiliary
lemmata.
Lemma A.1. Let x P K, y P BK. For every 0 ă λ ď 1 we have λx`p1´λqy P K.
Proof. Fix 0 ă λ ď 1. Since y P BK, there exists a sequence tyn : n P Nu Ď K
converging to y. Moreover, the sequence txn : n P Nu defined by
xn :“ x´ 1´ λ
λ
py ´ ynq,
converges to x. Therefore, there exists N such that xN P K, yielding
λx` p1´ λqy “ λxN ` p1´ λqyN P K.
�
Lemma A.2. Let x0 P K. The function T “ T px0q defined by
T : S1 Ñ p0,8q, T peq :“ sup
!
t ě 0: x0 ` te P K
)
,
is well-defined. Moreover, for every e P S1 we have
BK X tx0 ` te : t ě 0u “ tx0 ` T peqeu.
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Proof. Since K is open and bounded, for every e P S1 we have T peq P p0,8q.
Next, by the definition of T peq, there exists an increasing sequence ttn : n P
Nu Ď p0,8q converging to T peq. Therefore, the sequence tx0 ` tne : n P Nu Ď K
converges to x0 ` T peqe. Since for T peq ă t ă 8 the point x0 ` te P R2zK, then
x0 ` T peqe P BK.
To conclude, suppose there exists t ą 0, t ‰ T peq such that x0 ` te P BK.
If t ă T peq, by Lemma A.1 we have x0 ` te P K, yielding a contradiction with
x0 ` te P BK.
If t ą T peq, the same argument yields a contradiction with x0`T peqe P BK. �
Lemma A.3. Let x0 P K. For T “ T px0q the function τ “ τpx0q defined by
τ : S1 Ñ BK Ď R2, τpeq :“ x0 ` T peqe,
is well-defined and bijective
Proof. The function is well-defined by Lemma A.2.
Injective. Suppose there exist e1, e2 P S1, e1 ‰ e2 such that
x0 ` T pe1qe1 “ x0 ` T pe2qe2.
If e1 ‰ ´e2, they are two linearly independent vectors, hence T pe1q “ T pe2q “ 0,
yielding a contradiction with T pe1q, T pe2q ą 0.
If e1 “ ´e2, then T pe1q “ ´T pe2q. Since T pe1q ą 0, then T pe2q ă 0, yielding a
contradiction with T pe2q ą 0.
Surjective. Let x P BK and consider
e “ x´ x0|x´ x0| P S
1.
Then x P BK X tx0 ` te : t ě 0u. By Lemma A.2, we have x “ x0 ` T peqe. �
The remaining ingredient to define γ is the following collection of parametriza-
tions of S1.
Definition A.4. Let e P S1 Ď R2. We define the the counterclockwise continuous
parametrization Θ “ Θpeq of the circle S1 with starting point e by
Θ: r0, 2piq Ñ S1 Ď R2, Θpθq :“
ˆ
cos θ ´ sin θ
sin θ cos θ
˙
e.
In particular, for every x1 P BK let Θ “ Θpx1q be the counterclockwise continu-
ous parametrization of the circle S1 with starting point τ´1px1q P S1.
Lemma A.5. Let x0 P K, x1 P Γ “ BK. For τ “ τpx0q, Θ “ Θpx1q the function
γ “ γpx0, x1q defined by
γ : r0, 2piq Ñ Γ “ BK Ď R2, γ :“ τ ˝Θ,
is well-defined, bijective and continuous.
Proof. The function is well-defined and bijective by Lemma A.3 and the definition
of Θ. The continuity of γ follows from that of Θ and T ˝Θ.
It is enough to prove that the function T ˝Θ is continuous. We argue by contradic-
tion and we suppose that it has a discontinuity in θ. Let tθn : n P Nu be a sequence
converging to θ such that tT pΘpθnqq : n P Nu does not converge to T pΘpθqq. In
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particular, there exists ε ą 0 and a subsequence tθn : n P M Ď Nu Ď tθn : n P Nu
such that
inf
!
|T pΘpθqq ´ T pΘpθnqq| : n PM
)
ě ε.
Since K is compact, there exists a subsequence tθn : n P ĂM Ď Mu Ď tθn : n P Mu
such that the limit of tT pΘpθnqq : n P ĂMu exists and is rT ‰ T pΘpθqq. We distinguish
two cases.
Case I: rT ą T pΘpθqq. Fix t such that rT ą t ą T pΘpθqq. The sequence!
x0 ` trT T pΘpθnqqΘpθnq : n P ĂM
)
Ď K,
converges to x0 ` tΘpθq. Therefore, we have x0 ` tΘpθq P K Y BK. Then, by
the convexity of K and Lemma A.1, we have x0 ` T pΘpθqqΘpθq P K, yielding a
contradiction with x0 ` T pΘpθqqΘpθq P BK.
Case II: T pΘpθqq ą rT . Fix t such that T pΘpθqq ą t ą rT . The sequence!
x0 ` trT T pΘpθnqqΘpθnq : n P ĂM
)
Ď R2zpK Y BKq,
converges to x0 ` tΘpθq. Therefore, we have x0 ` tΘpθq P R2zK. However, by
Lemma A.1, we have x0 ` tΘpθq P K, yielding a contradiction. �
We continue with the proof that every compact convex curve Γ “ BK is rectifi-
able. We first recall the definition of rectifiability.
Definition A.6. Let γ : I Ñ Γ Ď R2 be a continuous parametrization of a curve,
where I Ď R is a bounded interval of either of the following forms
I “ ra, bs, I “ ra, bq, I “ pa, bs, I “ pa, bq.
Let P “ tP0, . . . , Pku be a finite and strictly increasing collection of points in I,
namely P0 ă P1 ă ¨ ¨ ¨ ă Pk. Let σγpP q be the polygonal curve given by the segments
between γpPiq and γpPi`1q. Let `pσγpP qq be the length of σγpP q defined by
`pσγpP qq :“
k´1ÿ
i“0
|γpPi`1q ´ γpPiq|.
Let P be the set of all possible finite and strictly increasing collections of points in
I. The curve γpIq is rectifiable if
`pγpIqq :“ sup
!
`pσγpP qq : P P P
)
ă 8,
and we call `pγpIqq the length of γpIq.
Remark A.7. If I “ ra, bs, without loss of generality we consider only finite and
strictly increasing collections tP0, . . . , Pku of points in I such that P0 “ a, Pk “ b.
Now, for every parametrization γ : r0, 2piq Ñ Γ “ BK we define the parametriza-
tion rγ : r0, 2pis Ñ Γ “ BK by
@t P r0, 2piq, rγptq :“ γptq, rγp2piq :“ γp0q.
In particular, for rγ we can apply the observation made in Remark A.7. Moreover,
it is straight-forward to observe that `pγpr0, 2piqqq “ `prγpr0, 2pisqq. Therefore, with
a slight abuse of notation, we denote by γ also rγ.
Moreover, we introduce the auxiliary definition of convex hull we use in the
remaining part of the Appendix.
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Definition A.8. Let Q “ tQ1, . . . , Qku be a finite collection of points in R2. The
open convex hull chpQq is defined by
chpQq :“
! kÿ
i“1
αiQi : pα1, . . . , αkq P p0, 1qk,
kÿ
i“1
αi “ 1
)
.
Next, we state and prove three auxiliary lemmata.
Lemma A.9. Let x, y P Γ “ BK, x ‰ y. Let γ “ γpxq : r0, 2pis Ñ Γ “ BK be the
counterclockwise parametrization such that γp0q “ x. Let s P p0, 2piq be such that
γpsq “ y. Then the two pieces γpp0, sqq and γpps, 2piqq of the curve Γ are in the
closure of the distinct half-planes defined by the line l passing through x and y.
Proof. Let x0 P K. Let lx be the half-line emanating from x0 and passing through
x, and ly the half-line emanating from x0 and passing through y. We distinguish
three cases.
Case I: s “ pi. Then lx, ly Ď l, and the statement is satisfied.
Case II: s ă pi. In particular, x0 R l. Let H0 be the open half-plane such that
BH0 “ l and x0 P H0. The piece γpp0, sqq of the curve Γ is in the section of the plane
defined by the counterclockwise angle from lx to ly. We claim that γpp0, sqq Ď Hc0 .
We argue by contradiction and we suppose that there exists 0 ă u ă s such that
γpuq belongs to the open subset C “ chpx, y, x0q Ď K. Then γpuq P K, yielding a
contradiction with γpuq P BK.
Let Π be the open section of the plane defined by the counterclockwise angle
from ly to lx. Let A and B be the connected open subsets of the plane such that
A X B “ ∅, A Y B “ Π X pH0 Y BH0qc, x P BA and y P BB. The piece γpps, 2piqq
of the curve Γ is in the set Π. We claim that γpps, 2piqq Ď H0 Y BH0. We argue by
contradiction and we suppose that there exists s ă u ă 2pi such that γpuq belongs
to either of the subsets A and B. Without loss of generality, we assume γpuq P A.
Then x P chpγpuq, y, x0q Ď K, yielding a contradiction with x P BK.
Case III: s ą pi. We proceed as in Case II, switching the arguments for the
two subcases. �
lxly
l
Γ “ BK
C
B
A
x0
y
x
Figure 3. The open subsets A,B,C in Case II.
Lemma A.10. Let γ : r0, 2pis Ñ Γ Ď R2 be a parametrization of a compact convex
curve Γ. Let P “ tP0, . . . , Pku be a finite and strictly increasing collection of points
in r0, 2pis such that P0 “ 0, Pk “ 2pi. Then the open convex hull chpγpP qq is an
open convex polygon, and B chpγpP qq “ σγpP q.
Proof. Consider the segment between γpPjq and γpPj`1q. By Lemma A.9, all the
points in γpP q are in the same closed half-plane defined by the line passing through
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γpPjq and γpPj`1q. Therefore, the open convex hull chpγpP qq is in the same closed
half-plane, and the segment between γpPjq and γpPj`1q belongs to the boundary
B chpγpP qq. �
Lemma A.11. Let A,B be two convex polygons such that A Ď B. Then
`pBAq ď `pBBq.
Proof. We prove the claim by induction on the number n of sides of BA that are
not contained in BB. If n “ 0, then A “ B and the desired inequality is satisfied.
Next, suppose that there are n ě 1 sides of BA that are not contained in BB. We
choose one, we draw the line l defined by it, and we let H be the closed half-plane
defined by l containing A. Then C “ B XH is a convex polygon and, by triangle
inequality, we have
`pBCq ď `pBBq.
We observe that there are n´1 sides of BA that are not contained in BC. Therefore,
by induction hypothesis, we obtain the desired inequality. �
l
H
Γ “ BK
BA
BB
Figure 4. The inductive step.
Proof of Theorem 2.4. Let Bp0, Rq be a ball centred at the origin with radius R
containing K. Let ∆ be an equilateral triangle containing Bp0, Rq.
By Lemma A.10, for every finite and strictly increasing collection P “ tP0, . . . , Pku
of points in r0, 2pis such that P0 “ 0, Pk “ 2pi the open convex hull chpγpP qq is an
open convex polygon contained in ∆. Moreover, we have σγpP q “ B chpγpP qq.
By Lemma A.11, we have
`pγpIqq :“ sup
!
`pσγpP qq ď `pB∆q : P P P
)
ă 8.
�
Remark A.12. Let x0 P K, x1 P Γ “ BK. Let γ “ γpx0, x1q : r0, 2piq Ñ Γ be the
counterclockwise parametrization defined in Lemma A.5. Let z “ zpx1q : r0, `pΓqq Ñ
Γ be the counterclockwise affine arclength parametrization defined by
zp0q “ x1.
The function γ´1˝z is strictly increasing, because both γ and z are counterclockwise
parametrizations.
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A.2. Proofs of Theorem 2.5, Theorem 2.6, and Theorem 2.7. We introduce
two auxiliary functions θl and θr defined geometrically in every point of the convex
curve Γ “ BK by the minimal cone centred at the point and containing the convex
set K. These functions are strictly related to the left and right derivatives of the
arclength parametrization z of Γ, and are helpful in proving the desired theorems.
Definition A.13. Let x be a point in Γ “ BK. The cone Ex is defined by
Ex :“
!
e P S1 : tx` te : t ą 0u X BK ‰ ∅
)
.
Γ “ BK
x
y
Ex
Ey
Figure 5. Two instances of Ex.
Lemma A.14. For every x P Γ “ BK we have S1zEx ‰ ∅.
Proof. We argue by contradiction and we suppose that Ex “ S1. We fix any
arbitrary counterclockwise parametrization Ψ: r0, 2piq Ñ S1 as in Definition A.4.
Let y1, y2, y3 P BK be the points corresponding to the directions e1 “ Ψppi{3q,
e2 “ Ψppiq, and e3 “ Ψp5pi{3q. Therefore, we have x P chpy1, y2, y3q Ď K, yielding
a contradiction with x P BK. �
The previous result guarantees that the following definition is meaningful. For
every x P Γ “ BK let e0 “ e0pxq P S1zEx. Moreover, let Φ “ Φpe0q : r0, 2piq Ñ S1
be the counterclockwise parametrization of the circle with starting point e0 as in
Definition A.4.
Lemma A.15. For every x P Γ “ BK we have that Φ´1pExq is an interval with
extremal points a, b P r0, 2piq satisfying
(A.1) a ă b ď a` pi.
Proof. Let θ1, θ2 P Φ´1pExq such that θ1 ă θ2. We claim that for every θ P r0, 2piq,
θ1 ă θ ă θ2 we have e “ Φpθq P Ex.
By the definition of Φ, we have θ1 ‰ 0 and θ2 ‰ 2pi. Now, let e1, e2 P S1 be
defined by
e1 “ Φpθ1q, e2 “ Φpθ2q,
and let y1, y2 P BK be defined by
y1 “ tx` te1 : t ą 0u X BK, y2 “ tx` te2 : t ą 0u X BK.
We distinguish three cases.
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Case I: θ2 ą θ1 ` pi. We have
chpy1, y2q X tx` te0 : t ą 0u ‰ ∅,
yielding a contradiction with e0 R Ex.
Case II: θ2 ă θ1 ` pi. We have
chpy1, y2q X tx` te : t ą 0u ‰ ∅,
hence θ P Φ´1pEq.
Case III: θ2 “ θ1 ` pi. By Case I, we have
θ1 “ inf
!
θ P Φ´1pExq
)
, θ2 “ sup
!
θ P Φ´1pExq
)
.
Let y P K. It belongs to one of the two half-planes defined by the line through
y1, x, y2. Therefore, we haverθ :“ Φ´1´ y ´ x|y ´ x|¯ P Ex, θ1 ă rθ ă θ2 “ θ1 ` pi,
and we reduce to Case II for the couples pθ1, rθq and prθ, θ2q.
Therefore, Φ´1pExq is an interval with extremal points a, b P r0, 2piq. By Case I,
we obtain the desired relation between a, b described in (A.1). �
In particular, Γ “ BK is contained in the closed section of the plane defined
by the half-lines tx ` tΦpaq : t ě 0u and tx ` tΦpbq : t ě 0u. Now, for every
x P Γ “ BK let Ex be the cone as in Definition A.13 and let e0pxq P S1zEx. Next, let
Φx : r0, 2piq Ñ S1 be the counterclockwise parametrization of the circle with starting
point in e0pxq as in Definition A.4. After that, let x1 P Γ “ BK and let the arclength
parametrization z “ zpx1q : J Ñ Γ be defined as in Remark A.12. Then, we choose
the counterclockwise parametrization of the circle Υ “ Υpx1q : r0, 2piq Ñ S1 with
starting point
Φx1
´
inf
!
θ P r0, 2piq : Φx1pθq P Ex1
)¯
.
as in Definition A.4. Finally, we define the functions θl : p0, `pΓqs Ñ r0, 2piq and
θr : r0, `pΓqq Ñ r0, 2piq by
θlptq :“ Υ´1
´
´ Φzptq
´
sup
!
θ : θ P Φ´1zptqpEzptqq
)¯¯
,
θrptq :“ Υ´1
´
Φzptq
´
inf
!
θ : θ P Φ´1zptqpEzptqq
)¯¯
.
Lemma A.16. For all s, t P p0, `pΓqq, s ă t we have
(A.2) θrpsq ď θlptq ď θrptq.
Moreover, for every s P p0, `pΓqq we have
(A.3) θrp0q ď θlpsq ď θrpsq ď θlp`pΓqq.
Proof. The first inequality in (A.2) follows from
(A.4) θrpsq ď Υ´1
´ zptq ´ zpsq
|zptq ´ zpsq|
¯
“ Υ´1
´
´ zpsq ´ zptq|zpsq ´ zptq|
¯
ď θlptq.
The second inequality in (A.2) follows from Lemma A.15 and the definition of a
counterclockwise parametrization of S1 in Definition A.4. The first and the third
inequalities in (A.3) follow from the chain of inequalities in (A.4). �
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Lemma A.17. The functions θl and θr are increasing and have bounded variation.
Moreover, they coincide m-almost everywhere.
Proof. By Lemma A.16, the functions θl and θr are increasing. Moreover, they take
values in a bounded set, hence they have bounded variation.
Now, suppose that the functions θl and θr do not coincide m-almost everywhere.
Therefore, there exists an uncountable collection X Ď p0, `pΓqq of points such that
for every x P X we have
lim
tÑx´
θrptq ď θlpxq ă θrpxq ď lim
tÑx`
θrptq.
Hence, we have
lim
tÑ`pΓq´
θrptq ě
ÿ
xPX
´
lim
tÑx`
θrptq ´ lim
tÑx´
θrptq
¯
“ 8,
yielding a contradiction with θrpr0, `pΓqq Ď r0, 2piq. �
Lemma A.18. Fix s P J and consider the function φ “ φs defined by
φ : Jztsu Ñ r0, 2piq, φptq :“
$’’&’’%
Υ´1
´ zpsq ´ zptq
|zpsq ´ zptq|
¯
, if t ă s,
Υ´1
´ zptq ´ zpsq
|zptq ´ zpsq|
¯
, if t ą s.
Then, the function φ is increasing.
Proof. For all t, u P Jztsu, t ă u we claim that
(A.5) φptq ď φpuq.
Let x0 P K, x1 P Γ “ BK, and let γ “ γpx0, x1q and z “ zpx1q be the associated
parametrizations as in Remark A.12. Moreover, we consider the points zpsq, zptq,
and zpuq. By Remark A.12, we have
γ´1pzptqq ă γ´1pzpuqq.
We distinguish three cases according to the relation between s, t, and u.
Case I: s ă t ă u. We distinguish five additional subcases.
Case I.i. We assume
γ´1pzptqq ă γ´1pzpsqq ` pi ă γ´1pzpuqq.
By Lemma A.15, the points zptq and zpuq belong to distinct open half-planes defined
by the line passing through zpsq and γpγ´1pzpsqq ` piq. Moreover, let e0 P S1 be
defined by
e0 “ zpsq ´ x0|zpsq ´ x0| .
In particular, we have
´e0 “ γpγ
´1pzpsqq ` piq ´ x0
|γpγ´1pzpsqq ` piq ´ x0| P Ezpsq.
By Lemma A.15, we have that ´e0 belongs to the interior of Ezpsq, hence we have
e0 P S1zEzpsq. Let Φzpsq : r0, 2piq Ñ S1 be the counterclockwise parametrization
of the circle with starting point in e0 as in Definition A.4. To prove the desired
inequality in (A.5), it is enough to prove the inequality
(A.6) Φ´1zpsq
´ zptq ´ zpsq
|zptq ´ zpsq|
¯
ď Φ´1zpsq
´ zpuq ´ zpsq
|zpuq ´ zpsq|
¯
.
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To prove the desired inequality in (A.6), we argue by contradiction and we suppose
that
Φ´1zpsq
´ zpuq ´ zpsq
|zpuq ´ zpsq|
¯
ă Φ´1zpsq
´ zptq ´ zpsq
|zptq ´ zpsq|
¯
.
Therefore, the points zptq and zpuq belong to the same open half-plane defined by
the line passing through zpsq and γpγ´1pzpsqq ` piq, yielding a contradiction.
Case I.ii. We assume
γ´1pzptqq ă γ´1pzpuqq ă γ´1pzpsqq ` pi.
Let ls and lu be the half-lines emanating from x0 and passing through zpsq and zpuq
respectively. Since the parametrization z is counterclockwise, the point zptq belongs
to the open section of the plane defined by the angle strictly smaller than pi between
ls and lu. To prove the desired inequality in (A.5), we argue by contradiction and
we suppose that φpuq ă φptq. Let l1u and l1s be the half-lines emanating from zpsq
and passing through zpuq and x0 respectively. Since φpuq ă φptq, the point zptq
belongs to the open section of the plane defined by the angle strictly smaller than
pi between l1u and l1s. Therefore, we obtain
zptq P chpzpsq, zpuq, x0q Ď K,
yielding a contradiction with zptq P Γ “ BK.
Case I.iii. We assume
γ´1pzpsqq ` pi ă γ´1pzptqq ă γ´1pzpuqq.
We argue by contradiction and we suppose that φpuq ă φptq. Analogously to
Case I.ii, we obtain
zpuq P chpzpsq, zptq, x0q Ď K,
yielding a contradiction with zpuq P Γ “ BK.
Case I.iv. We assume
γ´1pzptqq ă γ´1pzpsqq ` pi “ γ´1pzpuqq.
The desired inequality in (A.5) follows from the fact that the parametrizations z,
γ, and Υ are counterclockwise.
Case I.v. We assume
γ´1pzptqq “ γ´1pzpsqq ` pi ă γ´1pzpuqq.
We prove the desired inequality in (A.5) analogously to Case I.iv.
Case II: t ă u ă s. We distinguish five additional subcases and we prove the
desired inequality in (A.5) analogously to Case I.
Case III: t ă s ă u. We prove the desired inequality in (A.5) by Case I applied
to φt and Case II applied to φu. �
Lemma A.19. The function θr is right-continuous, and the function θl is left-
continuous.
Proof. We focus on the case of the function θr. The case of the function θl is
analogous.
We want to prove that for every s P J we have
θrpsq “ lim
tÑs`
θrptq.
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We fix s P J . By Lemma A.17, the limit is an infimum and it is enough to prove
that for every ε ą 0 there exists t ą s such that
θrptq ď θrpsq ` 2ε.
By the definition of θr, there exists u P J , u ą s such that
(A.7) θrpsq ď Υ´1
´ zpuq ´ zpsq
|zpuq ´ zpsq|
¯
ď θrpsq ` ε.
By Lemma A.9, the piece zpps, uqq of the curve Γ is in the closure of the half-plane
defined by the line passing through zpsq and zpuq. In particular, by the definition
of θr and θl, and Lemma A.18, for every t P J , s ă t ă u we have
θrpsq ď Υ´1
´ zptq ´ zpsq
|zptq ´ zpsq|
¯
ď Υ´1
´ zpuq ´ zptq
|zpuq ´ zptq|
¯
ď θlpuq.
We distinguish two cases.
Case I. We assume
Υ´1
´ zpuq ´ zpsq
|zpuq ´ zpsq|
¯
“ θrpsq.
Then, we have θlpuq “ θrpsq. By Lemma A.16, for every t P J , s ă t ă u we have
θrptq “ θrpsq.
Case II. We assume
Υ´1
´ zpuq ´ zpsq
|zpuq ´ zpsq|
¯
ą θrpsq.
Then, we have θlpuq ą θrpsq. By Lemma A.15, there exists t P J , s ă t ă u such
that
(A.8)
0 ď Υ´1
´ zpuq ´ zptq
|zpuq ´ zptq|
¯
´Υ´1
´ zpuq ´ zpsq
|zpuq ´ zpsq|
¯
“
“ Φ´1zpuq
´ zptq ´ zpuq
|zptq ´ zpuq|
¯
´Φ´1zpuq
´ zpsq ´ zpuq
|zpsq ´ zpuq|
¯
ď ε.
Together with the definition of θr, the inequalities in (A.7) and (A.8) yield
θrptq ď Υ´1
´ zpuq ´ zptq
|zpuq ´ zptq|
¯
ď θrpsq ` 2ε.
�
We turn now to the derivatives z1l and z1r and their relation with the functions
θl and θr.
Proof of Theorem 2.5. In the proof that the derivatives are well-defined, we focus
on the case of the right derivative z1r. The case of the left derivative z1l is analogous.
We want to prove that for every s P J the limit
z1rpsq :“ lim
tÑs`
zptq ´ zpsq
t´ s ,
is well-defined in S1.
We fix s P J , we choose ε ą 0 such that s`ε P J . First, we consider the function
ψ “ ψpsq defined by
ψ : rs, s` εq Ñ r0, 2piq, ψptq :“ Υ´1
´ zptq ´ zpsq
|zptq ´ zpsq|
¯
´ θrpsq.
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By the definition of θr and Lemma A.18, the following limit exists and we have
lim
tÑs`
Υ´1
´ zptq ´ zpsq
|zptq ´ zpsq|
¯
ě θrpsq.
Moreover, by the definition of θr, for every δ ą 0 there exists t P J , t ą s such that
Υ´1
´ zptq ´ zpsq
|zptq ´ zpsq|
¯
ď θrpsq ` δ.
Therefore, by Lemma A.18 we have
(A.9) lim
tÑs`
Υ´1
´ zptq ´ zpsq
|zptq ´ zpsq|
¯
“ θrpsq.
To conclude that z1r is well-defined in S1, it is enough to prove that
(A.10) lim
tÑs`
|zptq ´ zpsq|
t´ s “ 1.
By Lemma A.19, for ρ ą 0 small enough we have
(A.11) θlps` ρq ď θrps` ρq ă θrpsq ` pi
2
.
For every t P ps, s`ρq let yps, tq be the intersection between the half-line emanating
from zpsq in the direction Υ´1pθrpsqq and the half-line emanating from zptq in the
direction ´Υ´1pθlptqq. By the inequalities in (A.11), the arc zprs, tsq of the curve
Γ is contained in the closure of the open convex hull chpzpsq, zptq, yps, tqq, which
is an obtuse triangle. This obtuse triangle is contained in a right-triangle with
the segment between zpsq and zptq as hypotenuse and a cathetus on the half-line
emanating from zpsq in the direction Υ´1pθrpsqq. By an argument analogous to
that used to prove Theorem 2.4, we have
t´ s ď |zptq ´ yps, tq|` |yps, tq ´ zpsq| ď psinψptq ` cosψptqq|zptq ´ zpsq|,
where t´ s is the length of the arc zprs, tsq of the curve Γ. Therefore, we have
lim
tÑs`
|zptq ´ zpsq|
t´ s ě limtÑs`
1
sinψptq ` cosψptq “ 1.
Together with |zptq´ zpsq| ď t´ s, the inequality in the previous display yields the
desired equality in (A.10).
In particular, by the equality in (A.9), we proved
(A.12) z1l “ Υ ˝ θl, z1r “ Υ ˝ θr,
Therefore, by Lemma A.17, the functions z1l and z1r coincide m-almost everywhere.
�
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Γ
zpsq
yps, tq
zptq
chpzpsq, zptq, yps, tqq
Figure 6. The obtuse triangle chpzpsq, zptq, yps, tqq shaded in blue
and the associated right-triangle in black.
Finally, we recall a result about the differentiability of a function of bounded
variation.
Theorem A.20 (Stein and Shakarchi [27], Theorem 3.4). Let a, b P R. If F is of
bounded variation on ra, bs, then F is differentiable almost everywhere.
Proof of Theorem 2.6. By Lemma A.17, the functions θl and θr have bounded vari-
ation. By Theorem A.20, they admit derivatives θ1l and θ1r well-defined m-almost
everywhere.
Moreover, by Lemma A.16, the function θr ´ θl is positive everywhere. By
Lemma A.17, it has bounded variation and it is zero m-almost everywhere. By
Theorem A.20, it admits a derivative m-almost everywhere, hence the derivative is
zero m-almost everywhere. Therefore, the functions θ1l and θ1r coincide m-almost
everywhere.
As we concluded in (A.12), we have
(A.13) z1lptq “
ˆ
cos θlptq
sin θlptq
˙
, z1rptq “
ˆ
cos θrptq
sin θrptq
˙
,
hence the functions z2l and z2r are well-defined m-almost everywhere by
(A.14) z2l ptq “
ˆ´ sin θlptq
cos θlptq
˙
θ1lptq, z2r ptq “
ˆ´ sin θrptq
cos θrptq
˙
θ1rptq.
In particular, they coincide m-almost everywhere. �
Proof of Theorem 2.7. By Lemma A.16, the Borel measure σ on J defined in (2.1)
is positive. Now, by the equalities in (A.12), for all a, b P J , a ď b we have
σppa, bqq “ maxt0, θlpbq ´ θrpaqu, σppa, bsq “ θrpbq ´ θrpaq,
σpra, bqq “ θlpbq ´ θlpaq, σpra, bsq “ θrpbq ´ θlpaq.
The metric density associated with the absolutely continuous part of σ with respect
to the Lebesgue measure m on J is κ.
Next, we define the Borel measure σr on J as follows. For all a, b P J , a ď b we
define
σrppa, bqq “ maxt0, lim
tÑb´
θrptq ´ θrpaqu, σrppa, bsq “ θrpbq ´ θrpaq,
σrpra, bqq “ lim
tÑb´
θrptq ´ θrpaq, σrpra, bsq “ θrpbq ´ θrpaq.
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The metric density associated with the absolutely continuous part of σr with respect
to the Lebesgue measure m on J coincides m-almost everywhere with θ1r.
For every b P J we consider the sequence of sets tpb´ε, bs : ε ą 0u that shrinks to
b nicely as in Definition 2.1. On each of these sets, the Borel measure σ´σr is zero.
By Theorem 2.2, the metric density associated with the absolutely continuous part
of σ´σr with respect to the Lebesgue measurem on J is zerom-almost everywhere.
Therefore, the functions κ and θ1r coincide m-almost everywhere. Analogously we
prove that the functions κ and θ1l coincide m-almost everywhere. By Theorem 2.6
and the equalities in (A.13) and (A.14), for m-almost every t P J we have
θ1lptq “ det
`
z1lptq z2l ptq
˘
, θ1rptq “ det
`
z1rptq z2r ptq
˘
,
yielding the desired result. �
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