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Abstract

Two-dimensional hypersingular equations over a disc are considered. A spectral method is developed, using
Fourier series in the azimuthal direction and orthogonal polynomials in the radial direction. The method
is proved to be convergent. Then, Tranter’s method is discussed. This method was devised in the 1950s
to solve certain pairs of dual integral equations. It is shown that this method is also convergent because it
leads to the same algebraic system as the spectral method.
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1. Introduction

Two-dimensional boundary-value problems involving a Neumann-type boundary condition on a thin plate
or crack can often be reduced to one-dimensional hypersingular integral equations. Examples are potential
flow past a rigid plate, acoustic scattering by a hard strip, water-wave interaction with thin impermeable
barriers [1], and stress fields around cracks [2]; for many additional references, see [3] and [4, §6.7.1]. The
basic equation encountered takes the form
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v(t) dt = f(x) for −1 < x < 1, (1)

supplemented by two boundary conditions, which we take to be v(−1) = v(1) = 0. Here, v is the unknown
function, f is prescribed and the kernel K is known. The cross on the integral sign indicates that it is to be
interpreted as a two-sided finite-part integral of order two: if g� is Hölder continuous (g ∈ C1,α),
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Assuming that f is sufficiently smooth, the solution v has square-root zeros at the end-points. This
suggests that we write

v(x) = w(x)u(x) with w(x) =
�
1− x2.

Then, we expand u using a set of orthogonal polynomials; a good choice is to use Chebyshev polynomials
of the second kind, Un, defined by [5, 18.5.2]

Un(cos θ) =
sin (n+ 1)θ

sin θ
, n = 0, 1, 2, . . . .
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To effect the integration, we use Tranter’s integral [21, 23],

21−µΓ(n+m+ 1)

Γ(n+ 1)Γ(m+ µ)
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0
xn+1Fm(n+ µ, n+ 1, x2)

Jn(ξx)

(1− x2)1−µ
dx = ξ−µJn+2m+µ(ξ), (44)

with n > −1 and µ > 0. Thus, (43) gives
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(1 + h(κ))κ2−2µJn+2m+µ(κ)Jn+2l+µ(κ) dκ = E(n, l, µ), (45)

where the constants on the right-hand side are given by

E(n, l, µ) =
21−µ(n+ l)!

n!Γ(l + µ)
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rn+1(1− r2)µ−1Fl(n+ µ, n+ 1, r2) gσn(r) dr.

Now, how should we select µ? Tranter [21, p. 319] observes that the system (45) can be solved explicitly
if the term (1 + h)κ2−2µ in the integrand is replaced by κ−1, and then suggests that the difference between
these two terms should be made ‘fairly small’, if possible, by the choice of µ. (There is a similar suggestion
in Tranter’s book [23, p. 116] and in Duffy’s book [24, p. 248].) If we interpret Tranter’s prescription as
meaning in the limit κ → ∞, we find that µ = 3

2 . With this choice, (45) reduces to
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where jn is a spherical Bessel function, and (44) gives
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ξ
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π
jn+2m+1(ξ). (47)

Then, as the spherical Bessel functions are orthogonal in the following sense [5, 10.22.55],
� ∞

0
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, (48)

the system (46) becomes
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This system is the same as (35). As the spectral method leading to (35) has been shown to be convergent,
we infer that truncated forms of Tranter’s method are convergent.

Notice the choice µ = 3
2 made with Tranter’s method. This choice is not arbitrary. Indeed, with any

particular application, the quantity B can be related to a physical quantity, v, a quantity that has a known
behaviour near the edge of the disc, D. This behaviour is enforced by the correct choice for µ. Similar
remarks can be made when Tranter’s method is used for other boundary value problems, such as acoustic
scattering by a sound-soft disc (Dirichlet condition).
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